Most of the wall paintings from Pompeii are decorated with red and yellow colors but the thermal impact of 79 AD Mount Vesuvius eruption promoted the partial transformation of some yellow-painted areas into red. The aim of this research is to develop a quantitative Raman imaging methodology to relate the transformation percentage of yellow ochre (goethite, α-FeOOH) into red color (hematite, α-FeO) depending on the temperature, in order to apply it and estimate the temperature at which the pyroclastic flow impacted the walls of Pompeii. To model the thermal impact that took place in the year 79 AD, nine wall painting fragments recovered in the archeological site of Pompeii and which include yellow ochre pigment were subjected to thermal ageing experiments (exposition to temperatures from 200 to 400 °C every 25 °C). Before the experiments, elemental information of the fragments was obtained by micro-energy dispersive X-ray fluorescence (μ-ED-XRF). The fragments were characterized before and after the exposition using Raman microscopy to monitor the transformation degree from yellow to red. The quantitative Raman imaging methodology was developed and validated using synthetic pellets of goethite and hematite standards. The results showed almost no transformation (0.5% ± 0.4) at 200 °C. However, at 225 °C, some color transformation (26.9% ± 2.8) was observed. The most remarkable color change was detected at temperatures between 250 °C (transformation of 46.7% ± 1.7) and 275 °C (transformation of 101.1% ± 1.2). At this last temperature, the transformation is totally completed since from 275 to 400 °C the transformation percentage remained constant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-019-02175-5 | DOI Listing |
J Mater Chem B
January 2025
Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Laboratory of Advanced Theranostic Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
The critical need for rapid cancer diagnosis and related illnesses is growing alongside the current healthcare challenges, unfavorable prognosis, and constraints in diagnostic timing. As a result, emphasis on surface-enhanced Raman spectroscopy (SERS) diagnostic methods, including both label-free and labelled approaches, holds significant promise in fields such as analytical chemistry, biomedical science, and physics, due to the user-friendly nature of SERS. Over time, the SERS detection sensitivity and specificity with nanostructured materials for SERS applications (NMs-SERS) in different media have been remarkable.
View Article and Find Full Text PDFA compact and easy-to-use high-bandwidth autobalanced detector for microscopy is presented, being able to remove up to 67 dB of correlated noise, thus, allowing for shot-noise limited image acquisition even in the presence of high laser excess noise. Detecting a 20 MHz modulation frequency at half the repetition rate of the driving pulsed laser, the autobalanced detector is able to exploit an extra +3 dB increase in signal-to-noise ratio due to the coherent addition of modulation sidebands in stimulated Raman scattering. Pixel-by-pixel noise canceling and correction of sample transmission losses are possible for pixel scan rates of more than 1.
View Article and Find Full Text PDFSci Rep
January 2025
Centre for Applied Photonics, INESC TEC, Rua do Campo Alegre 687, 4169-007, Porto, Portugal.
Spectral Imaging techniques such as Laser-induced Breakdown Spectroscopy (LIBS) and Raman Spectroscopy (RS) enable the localized acquisition of spectral data, providing insights into the presence, quantity, and spatial distribution of chemical elements or molecules within a sample. This significantly expands the accessible information compared to conventional imaging approaches such as machine vision. However, despite its potential, spectral imaging also faces specific challenges depending on the limitations of the spectroscopy technique used, such as signal saturation, matrix interferences, fluorescence, or background emission.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom.
The aggregation of α-synuclein is crucial to the development of Lewy body diseases, including Parkinson's disease and dementia with Lewy bodies. The aggregation pathway of α-synuclein typically involves a defined sequence of nucleation, elongation, and secondary nucleation, exhibiting prion-like spreading. This study employed Raman spectroscopy and machine learning analysis, alongside complementary techniques, to characterize the biomolecular changes during the fibrillation of purified recombinant wild-type α-synuclein protein.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA.
Not only do surface-growing microbes such as biofilms display specific traits compared to planktonic cells, but also they display many heterogeneous behaviors over many spatial and temporal contexts. While the application of molecular genetics tools to extract or visualize gene expression or regulatory function data is now common in studying surface growth, the use of analytical chemistry tools to visualize the spatiotemporal distribution of chemical products synthesized by these surface microbes is less common. Here, we review chemical imaging tools that have been used to inform our understanding of surface-growing microbes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!