Purpose: Evidence to date has failed to reveal unique female determinants of cardiovascular disease. However, a strong association was recently observed between increased metabolic activity in the amygdala, a neural centre involved in the processing of emotions, and impaired myocardial function in women, but not in men. Given the stronger immune responses in females, we sought to retrospectively investigate the interaction between inflammation, perceived stress, and myocardial injury.
Methods: Overall, 294 patients (mean age 66.9 ± 10.0 years, 28.6% women) underwent both, Tc-tetrofosmin single-photon emission computed tomography myocardial perfusion imaging and F-fluorodeoxyglucose (F-FDG) positron emission tomography/computed tomography for the assessment of cardiac function, bone marrow metabolism (surrogate marker of inflammation), and resting amygdalar activity.
Results: A positive association was found between amygdalar metabolism and F-FDG bone marrow uptake in women (r = 0.238, p = 0.029), but not in men (r = 0.060, p = 0.385). Linear regression models selected both, abnormal left ventricular ejection fraction (LVEF) and abnormal myocardial perfusion, as significant indicators of an increased amygdalar activity in women (B-coefficient LVEF, - 0.096; p = 0.021; abnormal myocardial perfusion, 3.227; p = 0.043), but not in men (bone marrow p = 0.076; abnormal myocardial perfusion p = 0.420). Accordingly, an interaction term consisting of sex and LVEF/abnormal myocardial perfusion was significant (p = 0.043 and p = 0.015, respectively).
Conclusions: Upregulated amygdalar metabolism is associated with an enhanced inflammatory state in female patients with impaired cardiac function. Given that enhanced activity of the limbic system is associated with worse cardiovascular outcomes, our study suggests that a focus on inflammatory markers and indicators of distress might help to tailor cardiovascular risk assessment and therapy towards the female cardiovascular phenotype.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00259-019-04537-8 | DOI Listing |
Int J Mol Sci
January 2025
Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan Branch, Taoyuan 33304, Taiwan.
The electrophysiological mechanisms underlying melatonin's actions and the electrophysiological consequences of superimposed therapeutic hypothermia (TH) in preventing cardiac ischemia-reperfusion (IR) injury-induced arrhythmias remain largely unknown. This study aimed to unveil these issues using acute IR-injured hearts. Rabbits were divided into heart failure (HF), HF+melatonin, control, and control+melatonin groups.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
Background: Sepsis is associated with myocardial injury and early mortality. The innate immune receptor Toll-like receptor 4 (TLR4) can recognize pathogen-associated-molecular-patterns (PAMPs) and damage-associated molecular patterns (DAMPs); the latter are released during tissue injury. We hypothesized that TLR4 inhibition reduces proinflammatory signaling and cytokine release in: (1) LPS or Escherichia coli-treated isolated mouse heart; (2) LPS-treated mouse primary adult cardiomyocytes; and (3) the isolated heart during ischemia-reperfusion.
View Article and Find Full Text PDFJ Cardiovasc Dev Dis
January 2025
Department of Medical and Surgical Sciences and Translational Medicine, Sapienza University of Rome, 00185 Rome, Italy.
Refractory angina pectoris (RAP) is a clinical syndrome characterized by persistent chest pain caused by myocardial ischemia that is unresponsive to optimal pharmacological therapy and revascularization procedures. Spinal cord stimulation (SCS) has emerged as a promising therapeutic option for managing RAP, offering significant symptom relief and improved quality of life. A systematic literature review was conducted to evaluate the clinical effectiveness, mechanisms of action, and safety profile of SCS in treating RAP.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
Institute of Experimental Medicine, Almazov National Medical Research Centre, 15B Parkhomenko Street, 194021 Saint Petersburg, Russia.
Myocardial ischemia-reperfusion injury increases myocardial microvascular permeability, leading to enhanced microvascular filtration and interstitial fluid accumulation that is associated with greater microvascular obstruction and inadequate myocardial perfusion. A burst of reactive oxygen species and inflammatory mediators during reperfusion causes myosin light chain kinase (MLCK)-dependent endothelial hyperpermeability, which is considered a preventable cause of reperfusion injury. In the present study, a single intravenous injection of MLCK peptide inhibitor PIK7 (2.
View Article and Find Full Text PDFNucl Med Commun
January 2025
Department of Cardiac and Vascular Diseases, St.John Paul II Hospital, Jagiellonian University Medical College, Krakow, Poland.
Objectives: Cardiac resynchronization therapy (CRT) is an intervention for heart failure patients with reduced ejection fraction who exhibit specific electrocardiographic indicators of electrical dyssynchrony. However, electrical dyssynchrony does not universally correspond to left ventricular mechanical dyssynchrony (LVMD). Gated single-photon emission computed tomography (SPECT) myocardial perfusion allows for the assessment of LVMD, yet its role in the CRT selection process remains debated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!