A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

micrIO: an open-source autosampler and fraction collector for automated microfluidic input-output. | LitMetric

micrIO: an open-source autosampler and fraction collector for automated microfluidic input-output.

Lab Chip

Department of Bioengineering, Stanford University, Stanford, CA, USA. and Department of Genetics, Stanford University, Stanford, CA, USA and ChEM-H Institute, Stanford University, Stanford, CA, USA and Chan Zuckerberg Biohub, San Francisco, CA, USA.

Published: January 2020

Microfluidic devices are an enabling technology for many labs, facilitating a wide range of applications spanning high-throughput encapsulation, molecular separations, and long-term cell culture. In many cases, however, their utility is limited by a 'world-to-chip' barrier that makes it difficult to serially interface samples with these devices. As a result, many researchers are forced to rely on low-throughput, manual approaches for managing device input and output (IO) of samples, reagents, and effluent. Here, we present a hardware-software platform for automated microfluidic IO (micrIO). The platform, which is uniquely compatible with positive-pressure microfluidics, comprises an 'AutoSipper' for input and a 'Fraction Collector' for output. To facilitate widespread adoption, both are open-source builds constructed from components that are readily purchased online or fabricated from included design files. The software control library, written in Python, allows the platform to be integrated with existing experimental setups and to coordinate IO with other functions such as valve actuation and assay imaging. We demonstrate these capabilities by coupling both the AutoSipper and Fraction Collector to two microfluidic devices: a simple, valved inlet manifold and a microfluidic droplet generator that produces beads with distinct spectral codes. Analysis of the collected materials in each case establishes the ability of the platform to draw from and output to specific wells of multiwell plates with negligible cross-contamination between samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6923132PMC
http://dx.doi.org/10.1039/c9lc00512aDOI Listing

Publication Analysis

Top Keywords

fraction collector
8
automated microfluidic
8
microfluidic devices
8
microfluidic
5
micrio open-source
4
open-source autosampler
4
autosampler fraction
4
collector automated
4
microfluidic input-output
4
input-output microfluidic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!