Ab initio modelling of spin relaxation lengths in disordered graphene nanoribbons.

Phys Chem Chem Phys

Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil.

Published: December 2019

The spin-dependent transport properties of armchair graphene nanoribbons in the presence of extrinsic spin-orbit coupling induced by a random distribution of nickel adatoms is studied. By combining a recursive Green's function formalism with density functional theory, we explore the influence of ribbon length and metal adatom concentration on the conductance. At a given length, we observed a significant enhancement of the spin-flip channel around resonances and at energies right above the Fermi level. We also estimate the spin-relaxation length, finding values on the order of tens of micrometers at low Ni adatom concentrations. This study is conducted at singular ribbon lengths entirely from fully ab initio methods, providing indirectly evidence that the Dyakonov-Perel spin relaxation mechanism might be the dominant at low concentrations as well as the observation of oscillations in the spin-polarization.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cp04054dDOI Listing

Publication Analysis

Top Keywords

spin relaxation
8
graphene nanoribbons
8
initio modelling
4
modelling spin
4
relaxation lengths
4
lengths disordered
4
disordered graphene
4
nanoribbons spin-dependent
4
spin-dependent transport
4
transport properties
4

Similar Publications

Solution NMR studies of large systems are hampered by rapid signal decay. We hereby introduce ROCSY (relaxation-optimized total correlation spectroscopy), which maximizes transfer efficiency across J-coupling-connected spin networks by minimizing the amount of time magnetization spends in the transverse plane. Hard pulses are substituted into the Clean-CITY TOCSY pulse element first developed by Ernst and co-workers, allowing for longer delays in which magnetization is aligned along the z-axis.

View Article and Find Full Text PDF

Background: Elevated iron in brain is a source of free radicals that causes oxidative stress which has been linked to neuropathologies and cognitive impairment among older adults. The aim of this study was to investigate the association of iron levels with transverse relaxation rate, R, and white matter hyperintensities (WMH), independent of the effects of other metals and age-related neuropathologies.

Method: Cerebral hemispheres from 437 older adults participating in the Rush Memory and Aging Project study (Table 1) were imaged ex-vivo using 3T MRI scanners.

View Article and Find Full Text PDF

Time evolution of a pumped molecular magnet-A time-resolved inelastic neutron scattering study.

Proc Natl Acad Sci U S A

January 2025

William H. Miller III Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218.

Introducing an experimental technique of time-resolved inelastic neutron scattering (TRINS), we explore the time-dependent effects of resonant pulsed microwaves on the molecular magnet CrFPiv. The octagonal rings of magnetic Cr atoms with antiferromagnetic interactions form a singlet ground state with a weakly split triplet of excitations at 0.8 meV.

View Article and Find Full Text PDF

ConspectusWhile traditional quantum chemical theories have long been central to research, they encounter limitations when applied to complex situations. Two of the most widely used quantum chemical approaches, Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TDDFT), perform well in cases with relatively weak electron correlation, such as the ground-state minima of closed-shell systems (Franck-Condon region). However, their applicability diminishes in more demanding scenarios.

View Article and Find Full Text PDF

Spin-polarized lasing in manganese doped perovskite microcrystals.

Nat Commun

December 2024

Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

Spin-polarized lasers have demonstrated many superiorities over conventional lasers in both performance and functionalities. Hybrid organic-inorganic perovskites are emerging spintronic materials with great potential for advancing spin-polarized laser technology. However, the rapid carrier spin relaxation process in hybrid perovskites presents a major bottleneck for spin-polarized lasing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!