Historically, breast cancer tumors have been considered immunologically quiescent, with the majority of tumors demonstrating low lymphocyte infiltration, low mutational burden, and modest objective response rates to anti-PD-1/PD-L1 monotherapy. Tumor and immunologic profiling has shed light on potential mechanisms of immune evasion in breast cancer, as well as unique aspects of the tumor microenvironment (TME). These include elements associated with antigen processing and presentation as well as immunosuppressive elements, which may be targeted therapeutically. Examples of such therapeutic strategies include efforts to (1) expand effector T-cells, natural killer (NK) cells and immunostimulatory dendritic cells (DCs), (2) improve antigen presentation, and (3) decrease inhibitory cytokines, tumor-associated M2 macrophages, regulatory T- and B-cells and myeloid derived suppressor cells (MDSCs). The goal of these approaches is to alter the TME, thereby making breast tumors more responsive to immunotherapy. In this review, we summarize key developments in our understanding of antitumor immunity in breast cancer, as well as emerging therapeutic modalities that may leverage that understanding to overcome immunologic resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6820540PMC
http://dx.doi.org/10.1038/s41523-019-0133-7DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
cancer well
8
breast
5
build will
4
will targeting
4
targeting immune
4
immune response
4
response breast
4
cancer
4
cancer historically
4

Similar Publications

Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

View Article and Find Full Text PDF

Introduction: Management of pain associated with breast cancer surgeries is crucial in reducing incidence of postmastectomy pain syndrome. The pain distribution involves the anterior chest wall, axillary area and ipsilateral upper limb.

Objective: This study was designed to investigate the effect of bilevel erector spinae plane block (ESPB) with high thoracic block vs the conventional unilevel ESPB vs opioids in patients with cancer undergoing modified radical mastectomy regarding pain control and reducing pain in axilla.

View Article and Find Full Text PDF

Background: Breast cancer is the most common cancer among women. In response to the need to hospital stays and minimize waiting time for surgery, particularly during the COVID-19 pandemic, the National Cancer Institute developed the One Day Surgery with Breast cancer Home Recovery program (ODS BHR NCI). The aim of study is to assess the success rate of breast cancer surgeries conducted through this program and to evaluate the incidence of complications.

View Article and Find Full Text PDF

Immunogenic cell death (ICD) offers a promising avenue for the treatment of triple-negative breast cancer (TNBC). However, optimizing immune responses remains a formidable challenge. This study presents the design of RBCm@Pt-CoNi layered double hydroxide (RmPLH), an innovative sonosensitizer for sonodynamic therapy (SDT), aimed at enhancing the efficacy of programmed cell death protein 1 (PD-1) inhibitors by inducing robust ICD responses.

View Article and Find Full Text PDF

Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!