Effects of eicosapentaenoic acid and docosahexaenoic acid on C2C12 cell adipogenesis and inhibition of myotube formation.

Anim Cells Syst (Seoul)

Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville AR, USA.

Published: September 2019

Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) modulate cellular metabolic functions and gene expression. This study investigated the impacts of EPA and DHA on gene expression and morphological changes during adipogenic inducement in C2C12 myoblasts. Cells were cultured and treated with differentiation medium with and without 50 μM EPA and DHA. Cells treated with fatty acids had noticeable lipid droplets, but no formation of myotubes compared to control group cells. The expression levels of key genes relevant to adipogenesis and inflammation were significantly higher (< 0.05) in cells treated with fatty acids. Genes associated with myogenesis and mitochondrial biosynthesis and function had lower ( < 0.05) expression with fatty acids supplementation. Moreover, fatty acid treatment reduced ( < 0.05) oxygen consumption rate in the differentiated cells. This suggested blocking myotube formation through supplementation with EPA and DHA drove myoblasts to enter the quiescent state and enabled adipogenic trans-differentiation of the myoblasts. Data also suggested that overdosage of EPA and DHA during gestation may drive fetal mesenchymal stem cell differentiation to the fate of adipogenesis and have a long-term effect on childhood obesity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6830227PMC
http://dx.doi.org/10.1080/19768354.2019.1661282DOI Listing

Publication Analysis

Top Keywords

eicosapentaenoic acid
8
docosahexaenoic acid
8
gene expression
8
epa dha
8
effects eicosapentaenoic
4
acid
4
acid docosahexaenoic
4
acid c2c12
4
c2c12 cell
4
cell adipogenesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!