Norway spruce () is a dominant conifer species of major economic importance in northern Europe. Extensive breeding programs were established to improve phenotypic traits of economic interest. In southern Sweden, seeds used to create progeny tests were collected on about 3,000 trees of outstanding phenotype ('plus' trees) across the region. In a companion paper, we showed that some were of local origin but many were recent introductions from the rest of the natural range. The mixed origin of the trees together with partial sequencing of the exome of >1,500 of these trees and phenotypic data retrieved from the Swedish breeding program offered a unique opportunity to dissect the genetic basis of local adaptation of three quantitative traits (, and ) and assess the potential of assisted gene flow. Through a combination of multivariate analyses and genome-wide association studies, we showed that there was a very strong effect of geographical origin on growth ( and ) and phenology () with trees from southern origins outperforming local provenances. Association studies revealed that growth traits were highly polygenic and somewhat less. Hence, our results suggest that assisted gene flow and genomic selection approaches could help to alleviate the effect of climate change on breeding programs in Sweden.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6824079PMC
http://dx.doi.org/10.1111/eva.12855DOI Listing

Publication Analysis

Top Keywords

assisted gene
12
gene flow
12
potential assisted
8
norway spruce
8
southern sweden
8
local adaptation
8
genetic basis
8
quantitative traits
8
breeding programs
8
association studies
8

Similar Publications

Understanding the genetic basis of drought tolerance in safflower (Carthamus tinctorius L.) is essential for developing resilient varieties. In this study, we performed a genome-wide association study (GWAS) using DArTseq markers to identify marker-trait associations (MTAs) linked to drought tolerance across 90 globally diverse safflower genotypes.

View Article and Find Full Text PDF

Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.

View Article and Find Full Text PDF

Purpose: In China, the prevalence of hepatitis B virus (HBV) infection among infertile couples is a significant clinical problem. It is necessary to determine the effect of HBV infection on embryo development.

Methods: The 4301 fresh cycles and 5763 frozen embryo transfer (FET) cycles were grouped according to the couple with or without HBV infection.

View Article and Find Full Text PDF

FXYD1 was identified as a hub gene in recurrent miscarriage and involved in decidualization via regulating Na/K-ATPase activity.

J Assist Reprod Genet

December 2024

Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of ReproductionRegulation,Shanghai Institute for Biomedical and Pharmaceutical Technologies,Medical School, Fudan University, Shanghai, 200237, China.

Purpose: Recurrent miscarriage (RM) is a distressing and complicated adverse pregnancy outcome. It is commonly recognized that insufficient decidualization could result in RM, but the molecular mechanisms of decidual impairment are still not fully understood. Thus, this study aimed to identify novel key genes potentially involved in RM and explore their roles played in endometrial decidualization.

View Article and Find Full Text PDF

Polyethylene microplastic exposure adversely affects oocyte quality in human and mouse.

Environ Int

December 2024

Center for Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China. Electronic address:

Microplastics (MPs) are pervasive environmental contaminants, resulting in unavoidable human exposure. This study identified MPs in follicular fluid and investigated the specific MPs and mechanisms that adversely affect oocytes. MPs in the follicular fluid of 44 infertile women undergoing assisted reproductive technology were measured using Raman microspectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!