Atrial fibrillation (AF) is the most common human arrhythmia in clinical practice and may be promoted by atrial inflammation and fibrosis. Ubiquitination is an important posttranslational modification process that is reversed by deubiquitinating enzymes (DUBs). DUBs play critical roles in modulating the degradation, activity, trafficking, and recycling of substrates. However, less research has focused on the role of DUBs in AF. Here, we investigated the effect of ubiquitin C-terminal hydrolase 1 (UCHL1), an important DUB, on the development of AF induced by angiotensin II (Ang II). Male wild-type mice were treated with the UCHL1 inhibitor LDN57444 (LDN) at a dose of 40 μg/kg and infused with Ang II (2000 ng/kg/min) for 3 weeks. Our results showed that Ang II-infused wild-type (WT) mice had higher systolic blood pressure and an increased incidence and duration of AF. Conversely, this effect was attenuated in LDN-treated mice. Moreover, the administration of LDN significantly reduced Ang II-induced left atrial dilation, fibrosis, inflammatory cell infiltration, and reactive oxygen species (ROS) production. Mechanistically, LDN treatment inhibited the activation of multiple signaling pathways (the AKT, ERK1/2, HIF-1α, and TGF-β/smad2/3 pathways) and the expression of CX43 protein in atrial tissues compared with that in vehicle-treated control mice. Overall, our study identified UCHL1 as a novel regulator that contributes to Ang II-induced AF and suggests that the administration of LDN may represent a potential therapeutic approach for treating hypertensive AF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8075865 | PMC |
http://dx.doi.org/10.1038/s41440-019-0354-z | DOI Listing |
Background: Prostaglandin E (PGE) in the rostral ventrolateral medulla (RVLM) has been recognized as a pivotal pressor substance in hypertension, yet understanding of its effects and origins in the RVLM remains largely elusive. This study aimed to elucidate the pivotal enzymes and molecular mechanisms underlying PGE synthesis induced by central Ang II (angiotensin II) and its implications in the heightened oxidative stress and sympathetic outflow in hypertension.
Methods And Results: RVLM microinjections of PGE and Tempol were administered in Wistar-Kyoto rats.
JVS Vasc Sci
December 2024
Department of Cardiovascular Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA.
Treatment with an inhibitor of glucose use via glucose transporters (GLUT) has been shown to attenuate experimental abdominal aortic aneurysm (AAA) development in mice. Vascular smooth muscle cell (VSMC) signaling seems to be essential for angiotensin II (Ang II)-induced AAA in mice. Accordingly, we have tested a hypothesis that VSMC silencing of the major GLUT, GLUT1, prevents AAA development and rupture in mice treated with Ang II plus β-aminopropionitrile.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou City, Hubei Province, China.
Abdominal aortic aneurysm (AAA) is a severe cardiovascular disease (CVD) that is partly attributable to endothelial dysfunction, inflammatory response, and angiogenesis. G protein-coupled receptor 4 (GPR4), a proton-sensitive G protein-coupled receptor that is abundantly expressed in vascular endothelial cells, has been associated with numerous physiological functions. Nevertheless, its potential involvement in the development of AAA remains unexplored.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China. Electronic address:
Objective: This study was performed to compare the incidence of Angiotensin II (Ang II)-induced abdominal aortic aneurysms (AAA) between intravenous and intraperitoneal injection of AAV8.mPCSK9 in wild-type (WT) mice with C57BL/6J background and the pathological differences of above model in WT and ApoE mice.
Design: Male WT mice were injected intraperitoneally or intravenously with either a AAV8.
Life Sci
December 2024
Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China. Electronic address:
Aims: Impairment of nitric oxide (NO) production is a major cause of endothelial dysfunction and hypertension. ClC-5 Cl channel is abundantly expressed in the vascular endothelium. However, it remains unclear how it regulates endothelial function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!