A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Detecting long-lasting transients of earthquake activity on a fault system by monitoring apparent stress, ground motion and clustering. | LitMetric

Damaging earthquakes result from the evolution of stress in the brittle upper-crust, but the understanding of the mechanics of faulting cannot be achieved by only studying the large ones, which are rare. Considering a fault as a complex system, microearthquakes allow to set a benchmark in the system evolution. Here, we investigate the possibility to detect when a fault system starts deviating from a predefined benchmark behavior by monitoring the temporal and spatial variability of different micro-and-small magnitude earthquakes properties. We follow the temporal evolution of the apparent stress and of the event-specific residuals of ground shaking. Temporal and spatial clustering properties of microearthquakes are monitored as well. We focus on a fault system located in Southern Italy, where the M 6.9 Irpinia earthquake occurred in 1980. Following the temporal evolution of earthquakes parameters and their time-space distribution, we can identify two long-lasting phases in the seismicity patterns that are likely related to high pressure fluids in the shallow crust, which were otherwise impossible to decipher. Monitoring temporal and spatial variability of micro-to-small earthquakes source parameters at near fault observatories can have high potential as tool for providing us with new understanding of how the machine generating large earthquakes works.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838128PMC
http://dx.doi.org/10.1038/s41598-019-52756-8DOI Listing

Publication Analysis

Top Keywords

fault system
12
temporal spatial
12
apparent stress
8
monitoring temporal
8
spatial variability
8
temporal evolution
8
fault
5
system
5
earthquakes
5
temporal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!