Large hydrate reservoirs in the Arctic regions could provide great potentials for recovery of methane and geological storage of CO. In this study, injection of flue gas into permafrost gas hydrates reservoirs has been studied in order to evaluate its use in energy recovery and CO sequestration based on the premise that it could significantly lower costs relative to other technologies available today. We have carried out a series of real-time scale experiments under realistic conditions at temperatures between 261.2 and 284.2 K and at optimum pressures defined in our previous work, in order to characterize the kinetics of the process and evaluate efficiency. Results show that the kinetics of methane release from methane hydrate and CO extracted from flue gas strongly depend on hydrate reservoir temperatures. The experiment at 261.2 K yielded a capture of 81.9% CO present in the injected flue gas, and an increase in the CH concentration in the gas phase up to 60.7 mol%, 93.3 mol%, and 98.2 mol% at optimum pressures, after depressurizing the system to dissociate CH hydrate and after depressurizing the system to CO hydrate dissociation point, respectively. This is significantly better than the maximum efficiency reported in the literature for both CO sequestration and methane recovery using flue gas injection, demonstrating the economic feasibility of direct injection flue gas into hydrate reservoirs in permafrost for methane recovery and geological capture and storage of CO. Finally, the thermal stability of stored CO was investigated by heating the system and it is concluded that presence of N in the injection gas provides another safety factor for the stored CO in case of temperature change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838119PMC
http://dx.doi.org/10.1038/s41598-019-52745-xDOI Listing

Publication Analysis

Top Keywords

flue gas
24
methane recovery
12
injection flue
12
hydrate reservoirs
12
gas
9
recovery sequestration
8
gas permafrost
8
permafrost methane
8
methane hydrate
8
optimum pressures
8

Similar Publications

A major obstacle to exploiting industrial flue gas for microalgae cultivation is the unfavorable acidic environment. We previously identified three upregulated genes in the low-pH-adapted model diatom : ferredoxin (PtFDX), cation/proton antiporter (PtCPA), and HCO transporter (PtSCL4-2). Here, we individually overexpressed these genes in to investigate their respective roles in resisting acidic stress (pH 5.

View Article and Find Full Text PDF

Secondary-ion-promoted active site redistribution in molecular sieves: A strategy to enhance catalyst bifunctionality.

J Colloid Interface Sci

December 2024

Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China. Electronic address:

As the frontier of environmental catalysis, mercury removal by deNO unit over bifunctional catalyst has emerged. However, it is fundamentally challenging to achieve simultaneous NO and mercury removal in industrial flue gas due to the commercial selective catalytic reduction (SCR) molecular sieves' lack of demercuration active centers. Herein, we demonstrate an active site in situ reconfiguration approach to enhance the oxidation of elemental mercury and immobilize divalent mercury by modified commercial SCR catalysts.

View Article and Find Full Text PDF

The simultaneous removal reaction (SRR) is a pioneering approach for achieving the simultaneous removal of anthropogenic NO and CO pollutants through catalytic reactions. To facilitate this removal across diverse industrial fields, it is crucial to understand the trade-offs and synergies among the multiple reactions involved in the SRR process. In this study, we developed mixed metal oxide nanostructures derived from layered double hydroxides as catalysts for the SRR, achieving high catalytic conversions of 93.

View Article and Find Full Text PDF

Behaviors of bio-modified calcium-based sorbents for simultaneous CO/NO removal: Correlation of the characteristics of biomass, modified Ca-sorbent and reactivity.

J Environ Manage

December 2024

Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China.

Article Synopsis
  • Simultaneous removal of CO and NO from flue gas is important for reducing atmospheric pollutants and carbon emissions.
  • An optimized calcium oxide (CaO) system is proposed using bio-modified calcium-based pellets, where biomass pyrolysis enhances efficiency.
  • The study finds that different biomass types impact pellet characteristics, with cellulose improving pellet structure for better CO/NO removal, while lignin increases biochar production, affecting capture performance based on pore structure and biochar content.
View Article and Find Full Text PDF

Induce (101) plane exposure boosting photocatalytic CO reduction in aerobic environment for NH-MIL-125.

J Colloid Interface Sci

December 2024

College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China. Electronic address:

NH-MIL-125 with abundant porosity and specific interactions with CO molecules, has been demonstrate great potential in the field of photocatalytic CO reduction. However, conventional NH-MIL-125 and their composites much lower CO photoreduction efficiency in aerobic environments because of the O competition. To circumvent the issue, this study modifies NH-MIL-125 through crystal facet engineering to enhance its selective CO adsorption and photocatalytic efficiency in the environment of impurity CO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!