Many seeds are green during development, and light has been shown to play a role in the efficiency with which maternally supplied substrates are converted into storage compounds. However, the effects of light on the fluxes through central metabolism that determine this efficiency are poorly understood. Here, we used metabolic flux analysis to determine the effects of light on central metabolism in developing embryos of false flax (). Metabolic efficiency in is of interest because, despite its growing importance as a model oilseed and engineering target and its potential as a biofuel crop, its yields are lower than other major oilseed species. Culture conditions under which steady-state growth and composition of developing embryos match those in planta were used to quantify substrate uptake and respiration rates. The carbon conversion efficiency (CCE) was 21% ± 3% in the dark and 42% ± 4% under high light. Under physiological illumination, the CCE (32% ± 2%) was substantially lower than in green and nongreen oilseeds studied previously. C and C isotopic labeling experiments were used together with computer-aided modeling to map fluxes through central metabolism. Fluxes through the oxidative pentose phosphate pathway (OPPP) were the principal source of CO production and strongly negatively correlated with CCE across light levels. OPPP fluxes were greatly in excess of demand for NAD(P)H for biosynthesis and larger than those measured in other systems. Excess reductant appears to be dissipated via cyanide-insensitive respiration. OPPP enzymes therefore represent a potential target for increasing efficiency and yield in .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6945844 | PMC |
http://dx.doi.org/10.1104/pp.19.00740 | DOI Listing |
Chem Rev
January 2025
Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States.
Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell's hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Molecular and Cellular Exercise Physiology, Department of physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
Kynurenic acid (KYNA) and quinolinic acid (QUIN) are metabolites of the kynurenine pathway of tryptophan degradation with opposing biological activities in the central nervous system. In the periphery, KYNA is known to positively affect metabolic health, whereas the effects of QUIN remain less explored. Interestingly, metabolic stressors, including exercise and obesity, differentially change the balance between circulating KYNA and QUIN.
View Article and Find Full Text PDFJ Int Med Res
January 2025
Department of Hypertension, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
Objective: In patients with primary hypertension (PH), left ventricular hypertrophy (LVH) is a critical predictor of cardiovascular events. We aimed to identify clinical and laboratory predictors of LVH in patients with PH.
Methods: This retrospective cohort study included 2321 patients with PH at the Fifth Affiliated Hospital of Xinjiang Medical University from December 2022 to January 2024.
Vet Res Commun
January 2025
Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Ghrelin, a peptide hormone primarily produced in the enteroendocrine cells of the gastrointestinal tract, plays a vital role in regulating food intake, and energy balance in avian species. This review examines the complex interactions between ghrelin and the central signaling pathways associated with hunger regulation in birds. In contrast to mammals, where ghrelin typically promotes feeding behavior, its effects in birds appear more nuanced, exhibiting anorexigenic properties under certain conditions.
View Article and Find Full Text PDFJ Gen Virol
January 2025
Division of Infection and Immunity, UCL, London, WC1E 6BT, UK.
Human immunodeficiency virus (HIV) is an exemplar virus, still the most studied and best understood and a model for mechanisms of viral replication, immune evasion and pathogenesis. In this review, we consider the earliest stages of HIV infection from transport of the virion contents through the cytoplasm to integration of the viral genome into host chromatin. We present a holistic model for the virus-host interaction during this pivotal stage of infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!