AI Article Synopsis

  • Platelet-derived growth factor (PDGF) is involved in cell growth and movement but can cause health issues like cancer and atherosclerosis when overactivated.
  • This study aimed to find new inhibitors of PDGF-B using virtual screening methods, utilizing techniques like molecular docking and simulation based on an existing anti-PDGF-B antibody's structure.
  • In laboratory tests, two compounds showed significant activity, suggesting a potential framework for developing more anti-PDGF-B agents from large chemical libraries.

Article Abstract

Platelet-derived growth factor (PDGF) is a family of growth factors with mitogenic and chemotactic activity. However, uncontrolled and overactivated PDGF signaling has been implicated in a variety of diseases, such as cancers and atherosclerosis. In this context, inhibition of PDGF-PDGFR signaling is of paramount importance in progression of such diseases. The purpose of the current study was to identify novel PDGF-B inhibitors using virtual screening methods. To this end, a combination of molecular modeling techniques such as molecular docking and dynamics simulation, as well as drug likeness filtering criteria, was applied to select anti-PDGF peptidomimetic candidates based on crystallography solved structure of an anti-PDGF-B monoclonal antibody named, MOR8457. In vitro biological assays of the selected compounds revealed two of them being active at micromolar IC concentrations. The presented work can provide a framework for systematic peptidomimetic identification for anti-PDGF-B agents from large chemical libraries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2019.103374DOI Listing

Publication Analysis

Top Keywords

platelet-derived growth
8
structure-based discovery
4
discovery novel
4
novel small
4
small molecule
4
molecule inhibitors
4
inhibitors platelet-derived
4
growth factor-b
4
factor-b platelet-derived
4
growth factor
4

Similar Publications

Cysteine-Specific F and NIR Dual Labeling of Peptides via Vinyltetrazine Bioorthogonal Conjugation for Molecular Imaging.

J Med Chem

January 2025

Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital of Sichuan University, Chengdu 610041, China.

Radiolabeled peptides are vital for positron emission tomography (PET) imaging, yet the F-labeling peptides remain challenging due to harsh conditions and time-consuming premodification requirements. Herein, we developed a novel vinyltetrazine-mediated bioorthogonal approach for highly efficient F-radiolabeling of a native peptide under mild conditions. This approach enabled radiosynthesis of various tumor-targeting PET tracers, including targeting the neurofibromin receptor (), the integrin αβ (), and the platelet-derived growth factor receptor β (), with a radiochemical yield exceeding 90%.

View Article and Find Full Text PDF

With the ongoing rise in the incidence of inflammatory bowel disease (IBD), its extraintestinal manifestations have garnered significant attention. IBD-related arthritis is notable for its insidious onset and unpredictability, presenting considerable challenges for clinical diagnosis and management. Factors such as gut microbiota, plasma proteins, inflammatory proteins, and biomarkers found in blood and urine may be closely associated with IBD-related arthritis.

View Article and Find Full Text PDF

Pulmonary vascular remodeling and arterial hypertension (PAH) correlate to increased platelet-derived growth factor (PDGF) activity and elevated KIT expression. Imatinib has emerged as a potential therapeutic agent for PAH. The purpose of this systematic review and meta-analysis was to assess the effectiveness of imatinib in treatment of PAH.

View Article and Find Full Text PDF

Platelet-rich plasma (PRP) has gained increasing recognition as a promising therapeutic agent in managing rheumatic diseases. Conventional treatments, including nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and disease-modifying antirheumatic drugs (DMARDs), primarily act on reducing inflammation but fail to address the underlying mechanisms of connective tissue degradation. PRP, an autologous preparation enriched with growth factors and bioactive molecules, is pivotal in modulating inflammation and fostering tissue regeneration.

View Article and Find Full Text PDF

PDGFR-α shRNA-polyplex for uveal melanoma treatment via EMT mediated vasculogenic mimicry interfering.

J Nanobiotechnology

December 2024

National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.

Up to 50% of individuals with uveal melanoma (UM), a frequent cancer of the eye, pass away from metastases. One of the major challenges in treating UM is the role of receptor tyrosine kinases (RTKs), which mediate the epithelial-mesenchymal transition (EMT) of tumors. RTKs are involved in binding multiple growth factors, leading to angiogenesis and vasculogenic mimicry (VM) phenomena.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!