Background: Smart pumps have been widely adopted but there is limited evidence to understand and support their use in pediatric populations. Our objective was to assess whether smart pumps are effective at reducing medication errors in the neonatal population and determine whether they are a source of alert burden and alert fatigue in an intensive care environment.
Methods: Using smart pump records, over 370,000 infusion starts for continuously infused medications used in neonates and infants hospitalized in a level IV NICU from 2014 to 2016 were evaluated. Attempts to exceed preset soft and hard maximum limits, percent variance from those limits, and pump alert frequency, patterns and salience were evaluated.
Results: Smart pumps prevented 160 attempts to exceed the hard maximum limit for doses that were as high as 7-29 times the maximum dose and resulted in the reprogramming or cancellation of 2093 infusions after soft maximum alerts. While the overall alert burden from smart pumps for continuous infusions was not high, alerts clustered around specific patients and medications, and a small portion (17%) of infusions generated the majority of alerts. Soft maximum alerts were often overridden (79%), consistent with low alert salience.
Conclusions: Smart pumps have the ability to improve neonatal medication safety when compliance with dose error reducing software is high. Numerous attempts to administer high doses were intercepted by dosing alerts. Clustered alerts may generate a high alert burden and limit safety benefit by desensitizing providers to alerts. Future efforts should address ways to improve alert salience.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6836424 | PMC |
http://dx.doi.org/10.1186/s12911-019-0945-2 | DOI Listing |
J Am Chem Soc
January 2025
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.
High mobility emissive organic semiconductors (HMEOSCs) are a kind of unique semiconducting material that simultaneously integrates high charge carrier mobility and strong emission features, which are not only crucial for overcoming the performance bottlenecks of current organic optoelectronic devices but also important for constructing high-density integrated devices/circuits for potential smart display technologies and electrically pumped organic lasers. However, the development of HMEOSCs is facing great challenges due to the mutually exclusive requirements of molecular structures and packing modes between high charge carrier mobility and strong solid-state emission. Encouragingly, considerable advances on HMEOSCs have been made with continuous efforts, and the successful integration of these two properties within individual organic semiconductors currently presents a promising research direction in organic electronics.
View Article and Find Full Text PDFPathogens
November 2024
Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea.
The emergence of antibiotic-resistant () is a pressing threat in clinical settings. Colistin is currently a widely used treatment for multidrug-resistant , serving as the last line of defense. However, reports of colistin-resistant strains of have emerged, underscoring the urgent need to develop alternative medications to combat these serious pathogens.
View Article and Find Full Text PDFJ Infus Nurs
January 2025
Author Affiliations: Elaine Marieb College of Nursing, Elaine Marieb Center for Nursing & Engineering Innovation, University of Massachusetts Amherst, Amherst, Massachusetts.
Intravenous pumps (IVPs) deliver IV medications to millions of acute care patients each year and result in many adverse events reported to the US Food and Drug Administration (FDA). Although the use of IVPs has improved overall safety, there are still high rates of error that risk the safety of all patients, especially those of advanced age and those suffering from critical illness. Most of the documented errors are based on clinician reports, although there is reason to believe that errors due to flow rate inaccuracy go undetected and unreported.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
Nano Lett
January 2025
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
Modern detection technology has driven camouflage technology toward multispectral compatibility and dynamic regulation. However, developing such stealth technologies is challenging due to different frequency-band principles. Here, this work proposes a design concept for a fluid-actuated multispectral compatible smart stealth device that employs a deformable mechanochromic layer/elastomer with a channeled dielectric layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!