AI Article Synopsis

  • ST131 is a concerning strain of bacteria that is highly resistant to multiple drugs and is often linked to serious infections like UTIs.
  • A study focused on bacteriocin-encoding plasmids from ST131 isolates revealed the presence of colicins and microcin V, which enhance the bacteria's virulence and resistance.
  • Bacteriocin-producing strains can inhibit the growth of competing bacteria, potentially increasing their chances of causing infections by better competing for resources in the human gut.

Article Abstract

ST131 is a clinical challenge due to its multidrug resistant profile and successful global spread. They are often associated with complicated infections, particularly urinary tract infections (UTIs). Bacteriocins play an important role to outcompete other microorganisms present in the human gut. Here, we characterized bacteriocin-encoding plasmids found in ST131 isolates of patients suffering from a UTI using both short- and long-read sequencing. Colicins Ia, Ib and E1, and microcin V, were identified among plasmids that also contained resistance and virulence genes. To investigate if the potential transmission range of the colicin E1 plasmid is influenced by the presence of a resistance gene, we constructed a strain containing a plasmid which had both the colicin E1 and genes. No difference in transmission range was found between transformant and wild-type strains. However, a statistically significantly difference was found in adhesion and invasion ability. Bacteriocin-producing isolates from both ST131 and non-ST131 lineages were able to inhibit the growth of other isolates, including other ST131. In summary, plasmids harboring bacteriocins give additional advantages for highly virulent and resistant ST131 isolates, improving the ability of these isolates to compete with other microbiota for a niche and thereby increasing the risk of infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920910PMC
http://dx.doi.org/10.3390/microorganisms7110534DOI Listing

Publication Analysis

Top Keywords

bacteriocin-encoding plasmids
8
short- long-read
8
long-read sequencing
8
st131 isolates
8
transmission range
8
st131
6
isolates
5
determining virulence
4
virulence properties
4
properties st131
4

Similar Publications

Leuconostoc mesenteroides strain MS4-derived bacteriocins: A potent antimicrobial arsenal for controlling Xylella fastidiosa infection.

Microbiol Res

January 2025

International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Via Ceglie 9, Valenzano, Bari 70010, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), Piazzale Enrico Fermi, 1, Portici, Naples 80055, Italy. Electronic address:

Xylella fastidiosa subsp. pauca (Xfp) currently presents a serious threat to agriculture in Europe and in the Mediterranean, following its discovery in several countries. Addressing this bacterial plant disease with traditional agricultural practices and management strategies has proven inadequate, highlighting the urgent need for effective and environmentally safe antibacterial solutions.

View Article and Find Full Text PDF

2102-15 complete genome sequence data.

Data Brief

October 2023

Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Farmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames, KT1 2EE, UK.

The article presents 2102-15 whole genome sequencing data generated by using Illumina and Oxford Nanopore platforms. The genome of the isolate consists of a chromosome and two plasmids. The data on bacteriocin-encoding genes present in the genome were collected through genome annotation and by using a BAGEL4 tool.

View Article and Find Full Text PDF

Background: Lentilactobacillus parabuchneri is of particular concern in fermented food bioprocessing due to causing unwanted gas formation, cracks, and off-flavor in fermented dairy foods. This species is also a known culprit of histamine poisonings because of decarboxylating histidine to histamine in ripening cheese. Twenty-eight genomes in NCBI GenBank were evaluated via comparative analysis to determine genomic diversity within this species and identify potential avenues for reducing health associated risks and economic losses in the food industry caused by these organisms.

View Article and Find Full Text PDF

Genomic and Phenotypic Evaluation of Potential Probiotic Pediococcus Strains with Hypocholesterolemic Effect Isolated from Traditional Fermented Food.

Probiotics Antimicrob Proteins

December 2022

Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, viale dell'Università 16, 35020, Padua, Legnaro, PD, Italy.

The use of probiotic microorganisms in food with the aim to confer health benefits to the host is one of the most critical roles of functional foods. Many pediococci bacteria frequently related to the meat environment, have technological properties, and are therefore commercially used as starter in the production of fermented meat products, such as different types of sausages. In this study, different lactic acid bacteria were isolated, identified to the species level, and then evaluated for their safety and functionality as possible probiotics.

View Article and Find Full Text PDF

Plantaricin 423 is produced by Lactobacillus plantarum 423 using the biosynthetic operon located on the 8,188-bp plasmid pPLA4. As with many class IIa bacteriocin operons, the operon carries biosynthetic genes (, precursor peptide; , immunity; , accessory; and , ABC transporter) but does not carry local regulatory genes. Little is known about the regulatory mechanisms involved in the expression of the apparently regulationless class IIa bacteriocins, such as plantaricin 423.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!