Herein the underlying apoptotic mechanism of Farnesiferol C (FC) derived from was elucidated in chronic myelogenous leukemia (CML) K562 and KBM5 cells. FC showed significant cytotoxicity in K562 and KBM5 cells, more so than in U937 and UL-60 acute myeloid leukemia (AML) cells. Cleaved PARP and caspase 9/3 attenuated the expression of Bcl2 and induced G1 arrest in K562 and KBM5 cells. Also, FC effectively abrogated the expression of cell cycle related proteins, such as: Cyclin D1, Cyclin E, Cyclin B1 in K562, and KBM5 cells, but caspase 3 inhibitor Z-DEVD-FMK rescued the cleavages of caspase 3 and PARP induced by FC in K562 cells. Of note, FC decreased histone deacetylase 1 (HDAC1) and HDAC2, and enhanced histone H3 acetylation K18 (Ac-H3K18) in K562 and KBM5 cells. Furthermore, combination of FC and Imatinib enhanced the apoptotic effect of Imatinib as a potent Imatinib sensitizer in K562 cells. Overall, our findings provide scientific evidence that inactivation of HDAC and caspase activation mediate FC induced apoptosis in CML cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888363 | PMC |
http://dx.doi.org/10.3390/ijms20225535 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!