Calcium Phosphate Nanoparticles for Therapeutic Applications in Bone Regeneration.

Nanomaterials (Basel)

School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland.

Published: November 2019

Bone injuries and diseases constitute a burden both socially and economically, as the consequences of a lack of effective treatments affect both the patients' quality of life and the costs on the health systems. This impended need has led the research community's efforts to establish efficacious bone tissue engineering solutions. There has been a recent focus on the use of biomaterial-based nanoparticles for the delivery of therapeutic factors. Among the biomaterials being considered to date, calcium phosphates have emerged as one of the most promising materials for bone repair applications due to their osteoconductivity, osteoinductivity and their ability to be resorbed in the body. Calcium phosphate nanoparticles have received particular attention as non-viral vectors for gene therapy, as factors such as plasmid DNAs, microRNAs (miRNA) and silencing RNA (siRNAs) can be easily incorporated on their surface. Calcium phosphate nanoparticles loaded with therapeutic factors have also been delivered to the site of bone injury using scaffolds and hydrogels. This review provides an extensive overview of the current state-of-the-art relating to the design and synthesis of calcium phosphate nanoparticles as carriers for therapeutic factors, the mechanisms of therapeutic factors' loading and release, and their application in bone tissue engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915504PMC
http://dx.doi.org/10.3390/nano9111570DOI Listing

Publication Analysis

Top Keywords

calcium phosphate
16
phosphate nanoparticles
16
therapeutic factors
12
bone tissue
8
tissue engineering
8
bone
6
calcium
5
nanoparticles
5
therapeutic
5
nanoparticles therapeutic
4

Similar Publications

Effect of a Mating Type Gene Editing in Using RNP/Nanoparticle Complex.

J Fungi (Basel)

December 2024

Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea.

Gene editing using CRISPR/Cas9 is an innovative tool for developing new mushroom strains, offering a promising alternative to traditional breeding methods that are time-consuming and labor-intensive. However, plasmid-based gene editing presents several challenges, including the need for selecting appropriate promoters for Cas9 expression, optimizing codons for the Cas9 gene, the unintended insertion of fragmented plasmid DNA into genomic DNA (gDNA), and regulatory concerns related to genetically modified organisms (GMOs). To address these issues, we utilized a Ribonucleoprotein (RNP) complex consisting of Cas9 and gRNA for gene editing to modify the A mating-type gene of .

View Article and Find Full Text PDF

One of the key factors of the interaction 'osteoplastic material-organism' is the state of the implant surface. Taking into account the fact that the equilibrium in regeneration conditions is reached only after the reparative histogenesis process is completed, the implant surface is constantly modified. This work is devoted to the numerical description of the dynamic bilateral material-medium interaction under close to physiological conditions, as well as to the assessment of the comparability of the model with and experimental results.

View Article and Find Full Text PDF

Impact of Particle Size and Sintering Temperature on Calcium Phosphate Gyroid Structure Scaffolds for Bone Tissue Engineering.

J Funct Biomater

November 2024

Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany.

Due to the chemical composition and structure of the target tissue, autologous bone grafting remains the gold standard for orthopedic applications worldwide. However, ongoing advancements in alternative grafting materials show that 3D-printed synthetic biomaterials offer many advantages. For instance, they provide high availability, have low clinical limitations, and can be designed with a chemical composition and structure comparable to the target tissue.

View Article and Find Full Text PDF

Enchondroma rarely occurs in the distal phalanx, and avulsion of the flexor digitorum profundus (FDP) tendon in this area is also rare. We report a case of recurrent enchondroma in the distal phalanx, which required reconstruction for an accidental FDP avulsion during surgery. A 36-year-old right-handed woman visited our hospital with a suspected recurrence of enchondroma and a planned surgery.

View Article and Find Full Text PDF

Objectives: This study aims to comparatively assess the preventive and protective effects of the self-assembling peptide P-4 on enamel erosion and evaluate the potential for enamel surface recovery when professional products are combined with home-use dental-care products during the erosive process.

Materials And Methods: Ninety-nine bovine incisors were divided into nine groups: a control group, four groups with the application of professional-products [P-4 peptide (Curodont-Repair), stannous/Sn containing solution (8% Sn), casein-phosphopeptide-amorphous-calcium-phosphate fluoride/CPP-ACPF (MI Varnish), sodium fluoride/NaF (Profluorid)] and four groups with the combination of professional products and home-use daily dental care products [P-4 peptide (Curodont Repair + Curodont Protect), stannous ions containing agents (8% Sn+Emofluor Gel Intensive-Care), CPP-ACPF (MI Varnish + MI Paste Plus), NaF (Profluorid + ReminPro)]. Professional products were applied once before a five-day erosive cycle, involving six 2-minute citric-acid exposures per day.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!