Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, fully convolutional network (FCN) has been successfully used to locate spliced regions in synthesized images. However, all the existing FCN-based algorithms use real-valued FCN to process each channel separately. As a consequence, they fail to capture the inherent correlation between color channels and the integrity of three channels. So, in this paper, quaternion fully convolutional network (QFCN) is proposed to generalize FCN to quaternion domain by replacing real-valued conventional blocks in FCN with quaternion conventional blocks. In addition, a new color image splicing localization algorithm is proposed by combining QFCNs and superpixel (SP)-enhanced pairwise conditional random field (CRF). QFCNs consider three different versions (QFCN32, QFCN16, and QFCN8) with different up-sampling layers. The SP-enhanced pairwise CRF is used to refine the results of QFCNs. Experimental results on three publicly available datasets demonstrate that the proposed algorithm outperforms the existing algorithms including some conventional algorithms and some deep learning-based algorithms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2019346 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!