Mathematical modeling and analysis of harmful algal blooms in flowing habitats.

Math Biosci Eng

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.

Published: July 2019

In this paper, we survey recent developments of mathematical modeling and analysis of the dynamics of harmful algae in riverine reservoirs. To make the models more realistic, a hydraulic storage zone is incorporated into a flow reactor model and new mathematical challenges arise from the loss of compactness of the solution maps. The key point in the study of the evolution dynamics is to prove the existence of global attractors for the model systems and the principal eigenvalues for the associated linearized systems without compactness.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2019336DOI Listing

Publication Analysis

Top Keywords

mathematical modeling
8
modeling analysis
8
analysis harmful
4
harmful algal
4
algal blooms
4
blooms flowing
4
flowing habitats
4
habitats paper
4
paper survey
4
survey developments
4

Similar Publications

Preserved ratio impaired spirometry, airflow obstruction, and their trajectories in relationship to chronic kidney disease: a prospective cohort study.

Sci Rep

January 2025

Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, No.2, Xihuan South Road, Beijing Economic and Technological Development Zone, Daxing District, Beijing, China.

Spirometry findings, such as restrictive spirometry and airflow obstruction, are associated with renal outcomes. Effects of spirometry findings such as preserved ratio impaired spirometry (PRISm) and its trajectories on renal outcomes are unclear. This study aimed to investigate the impact of baseline and trajectories of spirometry findings on future chronic kidney disease (CKD) events.

View Article and Find Full Text PDF

Stem cells prevent long-term deterioration of renal function after renal artery revascularization in a renovascular hypertension model in rats.

Sci Rep

January 2025

Renal Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo, 781, São Paulo, SP, 04039-032, Brazil.

Partial stenosis of the renal artery causes renovascular hypertension (RVH) and is accompanied by chronic renal ischemia, resulting in irreversible kidney damage. Revascularization constitutes the most efficient therapy for normalizing blood pressure (BP) and has significant benefits for renal function; however, the tissue damage caused by chronic hypoxia is not fully reversed. Mesenchymal stem cells (MSCs) have produced discrete results in minimizing RVH and renal tissue and functional improvements since the obstruction persists.

View Article and Find Full Text PDF

The Laser Interferometer Space Antenna (LISA) mission is designed to detect space gravitational wave sources in the millihertz band. A critical factor in the success of this mission is the residual acceleration noise metric of the internal test mass (TM) within the ultra-precise inertial sensors. Existing studies indicate that the coupling effects of residual gas and temperature gradient fluctuations significantly influence this metric, primarily manifesting as the radiometer effect and the outgassing effect.

View Article and Find Full Text PDF

Unbiased picture of the ligand docking process for the hevein protein-oligosaccharide complex.

Sci Rep

January 2025

Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, 1-1 Nishi, Gakuen-Kibanadai, Miyazaki, 889-2192, Japan.

The ligand-docking behavior of hevein, the major latex protein from the rubber tree Hevea brasiliensis (Euphorbiaceae), has been investigated by the unguided molecular dynamics (MD) simulation method. An oligosaccharide molecule, initially placed in an arbitrary position, was allowed to move around hevein for a prolonged simulation time, on the order of microseconds, with the expectation of spontaneous ligand docking of the oligosaccharide molecule to the binding site of hevein. In the binary solution system consisting of a hevein molecule and a chito-trisaccharide (GlcNAc) molecule, three out of the six separate simulation runs successfully reproduced the complex structure of the observed binding from.

View Article and Find Full Text PDF

Renal fibrosis is widely recognized as the ultimate outcome of many chronic kidney diseases. The process of epithelial-mesenchymal transition (EMT) plays a critical role in the progression of fibrosis following renal injury. UHRF1, as a critical epigenetic regulator, may play an essential role in the pathogenesis and progression of renal fibrosis and EMT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!