The impact of media converge on complex networks on disease transmission.

Math Biosci Eng

School of Science, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, P. R. China.

Published: July 2019

In this paper, we propose an epidemic disease model about the effect of media coverage on complex networks, where the contacts between nodes are treated as a social network. We calculate the basic reproduction number R and get that the disease-free equilibrium is locally and globally asymptotically stable if R< 1, otherwise disease-free equilibrium is unstable and there exists a unique endemic equilibrium, and the disease is permanent. And two immunization strategies are considered: proportional and target immunization. By comparing two immunization strategies, it is found that the target immunization is better than the proportional immunization. Finally, numerical simulations verify our results and some discussions of vaccination strategies are done in the control of infectious dseases.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2019316DOI Listing

Publication Analysis

Top Keywords

complex networks
8
disease-free equilibrium
8
immunization strategies
8
target immunization
8
immunization
5
impact media
4
media converge
4
converge complex
4
networks disease
4
disease transmission
4

Similar Publications

Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.

Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.

View Article and Find Full Text PDF

Ionic Strength-Induced Compartmentalization for Nanogel-in-Microgel Colloids.

Small

January 2025

DWI-Leibniz Institute for Interactive Materials e.V., RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany.

Compartmentalization is crucial for control over complex biological cascade reactions. In microgels, the formation of discrete compartments allows for simultaneous uptake and orthogonal release of physicochemically distinct drugs, among others. However, many state-of-the-art approaches yielding compartmentalized microgels require the use of specific, though not always biocompatible, components and temperatures well above the physiological range, which may damage possible biological cargo.

View Article and Find Full Text PDF

Aerosol CVD Carbon Nanotube Thin Films: From Synthesis to Advanced Applications: A Comprehensive Review.

Adv Mater

January 2025

Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea.

Carbon nanotubes (CNTs) produced by the floating-catalyst chemical vapor deposition (FCCVD) method are among the most promising nanomaterials of today, attracting interest from both academic and industrial sectors. These CNTs exhibit exceptional electrical conductivity, optical properties, and mechanical resilience due to their binder-free and low-defect structure, while the FCCVD method enables their continuous and scalable synthesis. Among the methodological FCCVD variations, aerosol CVD' is distinguished by its production of freestanding thin films comprising macroscale CNT networks, which exhibit superior performance and practical applicability.

View Article and Find Full Text PDF

Analyzing the cell interface is of paramount importance in understanding how cells interact and communicate with other cells, but an advanced analytical platform that can process complex and networked interactions between cell surface ligands and receptors is lacking. Herein, we developed the cell-interface-deciphering lipid nanotablet (CID-LNT) for multiplexed real-time cell analysis. LNT is a nanoparticle-tethered lipid bilayer chip where freely diffusing plasmonic nanoparticles induce scattering signal changes.

View Article and Find Full Text PDF

This study introduces a hybrid network model for phase classification, integrating quantum networks and complex-valued neural networks. This architecture uses elemental composition as its only input, eliminating complex feature engineering. Parameterized quantum networks handle sparse elemental data and convert data from real to complex domains, increasing information dimensionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!