Rapid recognition and determination of tryptophan by carbon nanotubes and molecularly imprinted polymer-modified glassy carbon electrode.

Bioelectrochemistry

School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China; Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials of Hunan Provincial Universities, Department of Chemistry and Material Science, Hengyang Normal University, Hengyang 421008, China. Electronic address:

Published: February 2020

A tryptophan (Trp) molecularly imprinted electrochemical sensor was fabricated by drop-coating an imprinted chitosan film on the surface of a glassy carbon electrode modified with multi-walled carbon nanotubes (MIP-MWCNTs/GCE). The surface morphology and electrochemical properties of the MIP-MWCNTs/GCE were characterized by scanning electron microscopy (SEM) and cyclic voltammetry (CV), respectively. The formation of hydrogen bonds between the functional polymer and the template molecule was confirmed by infrared spectroscopy. The electrochemical performance of the MIP-MWCNTs/GCE with Trp showed that the signal of the oxidation current of Trp obtained with MIP-MWCNTs/GCE was significantly enhanced relative to that of the uncovered GCE, indicating that the modified electrode can accelerate electron transfer and has strong selectivity for Trp. The experimental conditions were optimized in parallel, and under the optimal conditions, the MIP-MWCNTs/GCE showed a good linear relationship between the Trp oxidation peak current and Trp concentrations in the ranges of 2.0 nM-0.2 μM, 0.2 μM-10 μM and 10 μM-100 μM The limit of detection (LOD) was 1.0 nM (S/N = 3), and the modified electrode had good reproducibility and stability. Finally, the MIP-MWCNTs/GCE was successfully applied to the determination of Trp in the human serum samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2019.107393DOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
8
molecularly imprinted
8
glassy carbon
8
carbon electrode
8
current trp
8
modified electrode
8
trp
7
mip-mwcnts/gce
6
rapid recognition
4
recognition determination
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!