Energy Spectrum of Two-Dimensional Excitons in a Nonuniform Dielectric Medium.

Phys Rev Lett

Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA-EMFL, 25 avenue des Martyrs, 38042 Grenoble, France.

Published: September 2019

AI Article Synopsis

Article Abstract

We demonstrate that, in monolayers (MLs) of semiconducting transition metal dichalcogenides, the s-type Rydberg series of excitonic states follows a simple energy ladder: ε_{n}=-Ry^{*}/(n+δ)^{2}, n=1,2,…, in which Ry^{*} is very close to the Rydberg energy scaled by the dielectric constant of the medium surrounding the ML and by the reduced effective electron-hole mass, whereas the ML polarizability is accounted for only by δ. This is justified by the analysis of experimental data on excitonic resonances, as extracted from magneto-optical measurements of a high-quality WSe_{2} ML encapsulated in hexagonal boron nitride (hBN), and well reproduced with an analytically solvable Schrödinger equation when approximating the electron-hole potential in the form of a modified Kratzer potential. Applying our convention to other MoSe_{2}, WS_{2}, MoS_{2} MLs encapsulated in hBN, we estimate an apparent magnitude of δ for each of the studied structures. Intriguingly, δ is found to be close to zero for WSe_{2} as well as for MoS_{2} monolayers, what implies that the energy ladder of excitonic states in these two-dimensional structures resembles that of Rydberg states of a three-dimensional hydrogen atom.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.123.136801DOI Listing

Publication Analysis

Top Keywords

excitonic states
8
energy ladder
8
energy
4
energy spectrum
4
spectrum two-dimensional
4
two-dimensional excitons
4
excitons nonuniform
4
nonuniform dielectric
4
dielectric medium
4
medium demonstrate
4

Similar Publications

Quantum Dynamics Simulations of Exciton Polariton Transport.

Nano Lett

January 2025

Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.

Recent experiments have shown that exciton transport can be significantly enhanced through hybridization with confined photonic modes in a cavity. The light-matter hybridization generates exciton-polariton (EP) bands, whose group velocity is significantly larger than the excitons. Dissipative mechanisms that affect the constituent states of EPs, such as exciton-phonon coupling and cavity loss, have been observed to reduce the group velocities in experiments.

View Article and Find Full Text PDF

Low-threshold anisotropic polychromatic emission from monodisperse quantum dots.

Natl Sci Rev

February 2025

Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

Colloidal quantum dots (QDs) are solution-processable semiconductor nanocrystals with favorable optoelectronic characteristics, one of which is their multi-excitonic behavior that enables broadband polychromatic light generation and amplification from monodisperse QDs. However, the practicality of this has been limited by the difficulty in achieving spatial separation and patterning of different colors as well as the high pumping intensity required to excite the multi-excitonic states. Here, we have addressed these issues by integrating monodisperse QDs in multi-excitonic states into a specially designed cavity, in which the QDs exhibit an anisotropic polychromatic emission (APE) characteristic that allows for tuning the emission from green to red by shifting the observation direction from perpendicular to lateral.

View Article and Find Full Text PDF

Coplanar Dimeric Acceptors with Bathochromic Absorption and Torsion-Free Backbones through Precise Fluorination Enabling Efficient Organic Photovoltaics with 18.63% Efficiency.

Adv Sci (Weinh)

January 2025

Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529199, P. R. China.

Giant dimeric acceptors (GDAs), a sub-type of acceptor materials for organic solar cells (OSCs), have garnered much attention due to the synergistic advantages of their monomeric and polymeric acceptors, forming a well-defined molecular structure with a giant molecular weight for high efficiency and stability. In this study, for the first time, two new GDAs, DYF-V and DY2F-V are designed and synthesized for OSC operation, by connecting one vinylene linker with the mono-/di-fluorinated end group on two Y-series monomers, respectively. After fluorination, both DYF-V and DY2F-V exhibit bathochromic absorption and denser packing modes due to the stronger intramolecular charge transfer effect and torsion-free backbones.

View Article and Find Full Text PDF

This study investigates the photophysical behaviour of Mn/Fe and Mn/Sn co-doped CsPbCl3 perovskite nanocrystals (NCs) to explore carrier dynamics and dopant interactions. Using gated photoluminescence (PL) and temperature-dependent measurements, we elucidate the impact of dopant chemistry on exciton behaviour, focusing on vibrationally assisted delayed fluorescence (VADF) and energy transfer mechanisms. The efficiency of VADF is influenced by factors such as the bandgap, temperature, quantum confinement, and host composition.

View Article and Find Full Text PDF

Optical cavity enhancement of visible light-driven photochemical reaction in the crystalline state.

Chem Commun (Camb)

January 2025

Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita ward, Hokkaido 001-0020, Japan.

Photochemical reactions enable the synthesis of energetically unfavorable compounds but often require irradiation with ultraviolet light, which potentially induces side reactions. Here, cavity strong coupling enhances the efficiency of an all-solid state photocyclization in crystals of 2,4-dimethoxy-β-nitrostyrene under irradiation with visible light. The exposure to visible light facilitates photocyclization by the transition to a lower polaritonic state, which is energetically lower than the original transition state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!