The magic angle coil spinning (MACS) technique has been introduced as a very promising extension for solid state NMR detection, demonstrating sensitivity enhancements by a factor of 14 from the very first time it has been reported. The main beneficiary of this technique is the scientific community dealing with mass- and volume-limited, rare, or expensive samples. However, more than a decade after the first report on MACS, there is a very limited number of groups who have continued to develop the technique, let alone it being widely adopted by practitioners. This might be due to several drawbacks associated with the MACS technology until now, including spectral linewidth, heating due to eddy currents, and imprecise manufacturing. Here, we report a device overcoming all these remaining issues, therefore achieving: (1) spectral resolution of approx 0.01 ppm and normalized limit of detection of approx. 13 nmol s calculated using the anomeric proton of sucrose at 3 kHz MAS frequency; (2) limited temperature increase inside the MACS insert of only 5 °C at 5 kHz MAS frequency in an 11.74 T magnetic field, rendering MACS suitable to study live biological samples. The wafer-scale fabrication process yields MACS inserts with reproducible properties, readily available to be used on a large scale in bio-chemistry labs. To illustrate the potential of these devices for metabolomic studies, we further report on: (3) ultra-fine H-H and C-C J-couplings resolved within 10 min for a 340 mM uniformly C-labeled glucose sample; and (4) single zebrafish embryo measurements through H-H COSY within 4.5 h, opening the gate for the single embryo NMR studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9an01634a | DOI Listing |
J Magn Reson
November 2024
Sir Peter Mansfield Imaging Centre, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
Double-quantum filtered Na NMR experiments with one or two "magic angle" (54.7°) pulses in the filter step are widely used for selective observation of sodium ions that are interacting with ordered biological structures ("ordered sodium") and hence exhibit a distribution of quadrupolar splittings in their NMR spectrum. This approach has recently been extended to Na MRI where the conventional experiment has been modified, omitting the 180° pulse to reduce the absorption of radiofrequency energy during human studies.
View Article and Find Full Text PDFNat Commun
December 2024
Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
While H-H J-couplings are the cornerstone of all spectral assignment methods in solution-state NMR, they are yet to be observed in solids. Here we observe H-H J-couplings in plastic crystals of (1S)-(-)-camphor in solid-state NMR at magic angle spinning (MAS) rates of 100 kHz and above. This is enabled in this special case because the intrinsic coherence lifetimes at fast MAS rates become longer than the inverse of the H-H J couplings.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany.
Neurodegeneration in Huntington's disease (HD) is accompanied by the aggregation of fragments of the mutant huntingtin protein, a biomarker of disease progression. A particular pathogenic role has been attributed to the aggregation-prone huntingtin exon 1 (HTTex1), generated by aberrant splicing or proteolysis, and containing the expanded polyglutamine (polyQ) segment. Unlike amyloid fibrils from Parkinson's and Alzheimer's diseases, the atomic-level structure of HTTex1 fibrils has remained unknown, limiting diagnostic and treatment efforts.
View Article and Find Full Text PDFGels
December 2024
Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Ciudad Autónoma de Buenos Aires 1113, Argentina.
In this work, the mechanical properties of hydrogels based on linear polyethyleneimine (PEI) chemically crosslinked with ethyleneglycoldiglycidyl ether (EGDE) were improved by the ionic crosslinking with sodium tripolyphosphate (TPP). To this end, the quaternization of the nitrogen atoms present in the PEI structure was conducted to render a network with a permanent positive charge to interact with the negative charges of TPP. The co-crosslinking process was studied by H high-resolution magic angle spinning (H HRMAS) NMR and X-ray photoelectron spectroscopy (XPS) in combination with organic elemental analysis and inductively coupled plasma mass spectrometry (ICP-MS).
View Article and Find Full Text PDFJ Sep Sci
December 2024
Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Tübingen, Germany.
The present work reports on the preparation, characterization, and evaluation of a set of novel triphenyl-modified silica-based stationary phases without and with embedded ion-exchange sites for mixed-mode liquid chromatography. The three synthesized triphenyl phases differed in additionally incorporated ion-exchange sites. In one embodiment, allyltriphenylsilane was bonded to thiol-modified silica by thiol-ene click reaction, leading to particles with no ion-exchange sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!