Background: Chalcones are naturally occurring compounds found in various plant species which are widely used for the traditional popular treatments. Chalcones are distinguished secondary metabolites reported to display diverse biological activities such as antiviral, antiplatelet, anti-inflammatory, anticancer, antibacterial and antioxidant agents. The presence of a,ß-unsaturated carbonyl group in chalcones is assumed to be responsible for their bioactivity. In addition, heterocyclic compounds having nitrogen such as isoquinolines are of considerable interest as they constitute the core structural element of many alkaloids that have enormous pharmacological activities.
Objective: The objective of this study is the synthesis and biological activity of novel chalcones incorporating thiadiazolyl isoquinoline as potential anticancer candidates. Different genetic tools were used in an attempt to know the mechanism of action of this compound against breast cancer.
Methods: An efficient one pot synthesis of novel chalcones incorporating thiadiazolyl isoquinoline was developed. The cytotoxic activity of the novel synthesized compounds was performed against four different kinds of cancer cell lines.
Results: Among all the tested derivatives, chalcone 3 has the best cytotoxic profile against A549, MCF7, and HeLa cell lines, with IC50s 66.1, 51.3, and 85.1μM, respectively. Molecular docking studies for chalcone 3 revealed that CDK2, and EGFRTK domains have strong binding affinities toward the novel chalcone 3, while tubulin-colchicine-ustiloxin, and VEGFRTK domains illustrated moderate mode of binding.
Conclusion: We have developed an efficient method for the synthesis of novel chalcones incorporating thiadiazolyl isoquinoline. All compounds showed better cytotoxicity results against four kinds of cancer cell lines (A549, MCF7, HCT116, and HELA cells). The results depicted that chalcone 3 has a high and promising cytotoxic effect against HELA cell line and the mechanism of cytotoxicity was widely studied through different theoretical and experimental tools. Thus, the newly synthesized derivative 3 can be utilized as a novel chemotherapeutic compound for cervical carcinoma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1871520619666191024121116 | DOI Listing |
RSC Med Chem
January 2025
Fluoro-Agrochemicals, CSIR-Indian Institute of Chemical Technology Hyderabad-500 007 India
In continuation of our efforts to develop new anticancer compounds, a new series of imidazo[1,5-]pyridine-chalcone derivatives was designed, synthesized, characterized, and evaluated for its cytotoxicity against five human cancer cell lines, , breast (MDA-MB-231), colon (RKO), bone (Mg-63), prostate (PC-3), and liver (HepG2) cell lines, as well as a normal cell line (HEK). Among the synthesized compounds, two exhibited promising cytotoxicity against the MDA-MB-231 cell line with IC values of 4.23 ± 0.
View Article and Find Full Text PDFPlant Cell Physiol
December 2024
RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan.
Soybean (Glycine max) is a leguminous crop cultivated worldwide that accumulates high levels of isoflavones. Although previous research has often focused on increasing the soybean isoflavone content because of the estrogen-like activity of dietary soy in humans, the rapidly increasing demand for soybean as a plant-based meat substitute has raised concerns about excessive isoflavone intake. Therefore, the production of isoflavone-free soybean has been anticipated.
View Article and Find Full Text PDFBackground: Alzheimer's Disease (AD) is the leading form of senile dementia, affecting ∼6 million Americans and having a national economic impact of $321 billion, numbers expected to double by 2050. The major pathological hallmarks of AD include Amyloid Beta (Aβ) plaques and Tau neurofibrillary tangles (NFT). The first goal of this research was to develop novel forms of carbon dots (CD) using various precursors.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry & Biochemistry, California State University, Fresno, CA 93740, USA.
Prostate cancer remains a significant global health concern, prompting ongoing exploration of novel therapeutic agents. Licochalcone A, a natural product in the chalcone family isolated from licorice root, is characterized by its enone structure and demonstrates antiproliferative activity in the micromolar range across various cell lines, including prostate cancer. Building on our prior success in enhancing curcumin's antiproliferative potency by replacing the substituted phenol with a 1-alkyl-1H-imizadol-2-yl moiety, we applied a similar approach to design a new class of licochalcone A-inspired chalcones.
View Article and Find Full Text PDFFundam Clin Pharmacol
February 2025
Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil.
Background: Chalcones have been described in the literature as promising antineoplastic compounds.
Objectives: Therefore, the objective of this study was to analyze the cytotoxic effect of 23 synthetic chalcones on human acute leukemia (AL) cell lines (Jurkat and K562).
Methods: Cytotoxicity assessment was performed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!