Recent Development of Computational Predicting Bioluminescent Proteins.

Curr Pharm Des

Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.

Published: June 2020

Bioluminescent Proteins (BLPs) are widely distributed in many living organisms that act as a key role of light emission in bioluminescence. Bioluminescence serves various functions in finding food and protecting the organisms from predators. With the routine biotechnological application of bioluminescence, it is recognized to be essential for many medical, commercial and other general technological advances. Therefore, the prediction and characterization of BLPs are significant and can help to explore more secrets about bioluminescence and promote the development of application of bioluminescence. Since the experimental methods are money and time-consuming for BLPs identification, bioinformatics tools have played important role in fast and accurate prediction of BLPs by combining their sequences information with machine learning methods. In this review, we summarized and compared the application of machine learning methods in the prediction of BLPs from different aspects. We wish that this review will provide insights and inspirations for researches on BLPs.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1381612825666191107100758DOI Listing

Publication Analysis

Top Keywords

bioluminescent proteins
8
application bioluminescence
8
prediction blps
8
machine learning
8
learning methods
8
blps
6
bioluminescence
5
development computational
4
computational predicting
4
predicting bioluminescent
4

Similar Publications

Optimization of chemical transfection in airway epithelial cell lines.

BMC Biotechnol

January 2025

Centre for Heart Lung Innovation, St. Paul's Hospital, Providence Healthcare Research Institute, University of British Columbia, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada.

Background: Chemical transfection is a widely employed technique in airway epithelium research, enabling the study of gene expression changes and effects. Additionally, it has been explored for its potential application in delivering gene therapies. Here, we characterize the transfection efficiency of EX-EGFP-Lv105, an EGFP-expressing plasmid into three cell lines commonly used to model the airway epithelium (1HAEo-, 16HBE14o-, and NCI-H292).

View Article and Find Full Text PDF

Pyroptosis, a recently identified cellular demise regulated by gasdermin family proteins, is emerging as a promising avenue in cancer immunotherapy. However, the realm of light-controlled pyroptosis in cancer cells remains largely unexplored. In this study, we took a deliberate approach devoid of any chemical alterations to develop a novel photosensitizer called "pharmaceutical-dots (pharm-dots)" by combining nonemissive polymers (Poly (lactic-co-glycolic acid), PLGA) with nonfluorescent invisible molecules like curcumin, berberine, oridonin into PLGA nanoparticles (PLGA-NPs).

View Article and Find Full Text PDF

Regulation of myocardial contraction as revealed by intracellular Ca measurements using aequorin.

J Physiol Sci

January 2025

Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-Ku, 105-8461, Tokyo, Japan.

Of the ions involved in myocardial function, Ca is the most important. Ca is crucial to the process that allows myocardium to repeatedly contract and relax in a well-organized fashion; it is the process called excitation-contraction coupling. In order, therefore, for accurate comprehension of the physiology of the heart, it is fundamentally important to understand the detailed mechanism by which the intracellular Ca concentration is regulated to elicit excitation-contraction coupling.

View Article and Find Full Text PDF

Creating coveted bioluminescence colors for simultaneous multi-color bioimaging.

Sci Adv

January 2025

Department of Biomolecular Science and Engineering, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.

Bioluminescence, an optical marker that does not require excitation by light, allows researchers to simultaneously observe multiple targets, each exhibiting a different color. Notably, the colors of the bioluminescent proteins must sufficiently vary to enable simultaneous detection. Here, we aimed to introduce a method that can be used to expand the color variation by tuning dual-acceptor bioluminescence resonance energy transfer.

View Article and Find Full Text PDF

Gaussia Luciferase (GLuc) is a renowned reporter protein that can catalyze the oxidation of coelenterazine (CTZ) and emit a bright light signal. GLuc comprises two consecutive repeats that form the enzyme body and a central putative catalytic cavity. However, deleting the C-terminal repeat only limited reduces the activity (over 30% residual luminescence intensity detectable), despite being a key part of the cavity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!