Color-based visual signals are important aspects of communication throughout the animal kingdom. Individuals evaluate color to obtain information about age and condition and to behave accordingly. Birds display a variety of striking, conspicuous colors and make ideal subjects for the study of color signaling. While most studies of avian color focus on plumage, bare unfeathered body parts also display a wide range of color signals. Mate choice and intrasexual competitive interactions are easily observed in lekking grouse, which also signal with prominent unfeathered color patches. Most male grouse have one pair of colorful bare part ornaments (combs), and males of several species also have inflatable air sacs in their throat. Previous studies have mostly focused on comb color and size, but little is known about the signaling role of air sac color. We measured comb size and the color properties of combs and air sacs in the Lesser and Greater Prairie-Chickens ( and , respectively), and investigated whether these properties varied with age and mass. We found that mass predicted color properties of air sacs and that age predicted comb size in the Greater Prairie-Chicken, suggesting that these ornaments indicate condition dependence. No conclusive relationships between color and age or size were detected in the Lesser Prairie-Chicken. Color properties of both ornaments differed between the two species. Further research is needed to determine mechanisms that link condition to color and whether the information advertised by color signals from these ornaments is intended for males, females, or both.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822034 | PMC |
http://dx.doi.org/10.1002/ece3.5687 | DOI Listing |
Sci Rep
December 2024
Consumer and Design Sciences, College of Human Science Auburn University, Auburn, Alabama, USA.
Bermuda grass (Cynodon dactylon) is a tropical grass found in all tropical and subtropical areas. It is widely found in Bangladesh and well known for its antimicrobial properties. Cotton gauze is a woven cloth which is used for wound dressing and wound cushioning.
View Article and Find Full Text PDFNat Commun
December 2024
Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.
Taking advantage of the good mechanical strength of expanded Drosophila brains and to tackle their relatively large size that can complicate imaging, we apply potassium (poly)acrylate-based hydrogels for expansion microscopy (ExM), resulting in a 40x plus increased resolution of transgenic fluorescent proteins preserved by glutaraldehyde fixation in the nervous system. Large-volume ExM is realized by using an axicon-based Bessel lightsheet microscope, featuring gentle multi-color fluorophore excitation and intrinsic optical sectioning capability, enabling visualization of Tm5a neurites and L3 lamina neurons with photoreceptors in the optic lobe. We also image nanometer-sized dopaminergic neurons across the same intact iteratively expanded Drosophila brain, enabling us to measure the 3D expansion ratio.
View Article and Find Full Text PDFSci Rep
December 2024
Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém, 8200, Hungary.
Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research Center of Special Optical Fiber Materials and Devices, South China University of Technology, Guangzhou, China.
Smart control of energy interactions plays a key role in manipulating upconversion dynamics and tuning emission colors for lanthanide-doped materials. However, quantifying the energy flux in particular energy migration in the representative sensitizer-activator coupled upconversion system has remained a challenge. Here we report a conceptual model to examine the energy flux in a single nanoparticle by designing an interfacial energy transfer mediated nanostructure.
View Article and Find Full Text PDFNat Commun
December 2024
pi-Conjugated Polymers Unit, Okinawa Institute of Science and Technology, Kunigami-gun, Okinawa, Japan.
Irrespective of the specific see-through device, obtaining optimal transparency remains the primary goal. In this work, we introduce a general strategy to enhance the transparency of various see-through devices. We achieve this by structuring the colored functional materials into imperceptible three-dimensional mesh lines, addressing a common challenge in multi-layer structures where each layer causes a reduction in transparency due to their color or opacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!