Lipid accumulation is a driving force in tumor development, as it provides tumor cells with both energy and the building blocks of phospholipids for construction of cell membranes. Aberrant homeostasis of lipid metabolism has been observed in various tumors; however, the molecular mechanism has not been fully elucidated. Yin yang 1 (YY1) expression in hepatocellular carcinoma (HCC) was analyzed using clinical specimens, and its roles in HCC in lipid metabolism were examined using gain- and loss-of function experiments. The mechanism of YY1 regulation on peroxisome proliferator-activated receptor gamma coactivator-1β (PGC-1β) and its downstream genes medium-chain acyl-CoA dehydrogenase (MCAD) and long-chain acyl-CoA dehydrogenase (LCAD) were investigated using molecular biology and biochemical methods. The role of YY1/ PGC-1β axis in hepatocarcinogenesis was studied using xenograft experiment. This study showed that YY1 suppresses fatty acid β-oxidation, leading to increase of cellular triglyceride level and lipid accumulation in HCC cells, and subsequently induction of the tumorigenesis potential of HCC cells. Molecular mechanistic study revealed that YY1 blocks the expression of , an activator of fatty acid β-oxidation, by directly binding to its promoter; and thus downregulates PGC-1β/MCAD and PGC1-β/LCAD axis. Importantly, we revealed that YY1 inhibition on occurs irrespective of the expression of hypoxia-inducible factor-1α (HIF1-α), enabling it to promote lipid accumulation under both normoxic and hypoxic conditions. Our study reveals the critical role of YY1/PGC-1β axis in HCC cell lipid metabolism, providing novel insight into the molecular mechanisms associated with tumor cell lipid metabolism, and a new perspective regarding the function of YY1 in tumor progression. Thus, our study provides evidences regarding the potential of YY1 as a target for lipid metabolism-based anti-tumor therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6831470 | PMC |
http://dx.doi.org/10.7150/thno.34931 | DOI Listing |
J Epidemiol Glob Health
January 2025
Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, No.7, Chung Shan S. Rd., Zhongzheng District, Taipei City, 100225, Taiwan.
Background: Lipids are known to be involved in carcinogenesis, but the associations between lipid profiles and different lung cancer histological classifications remain unknown.
Methods: Individuals who participated in national adult health surveillance from 2012 to 2018 were included. For patients who developed lung cancer during follow-up, a 1:2 control group of nonlung cancer participants was selected after matching.
Adv Biotechnol (Singap)
March 2024
State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
Plant lipids are a diverse group of biomolecules that play essential roles in plant architecture, physiology, and signaling. To advance our understanding of plant biology and facilitate innovations in plant-based product development, we must have precise methods for the comprehensive analysis of plant lipids. Here, we present a comprehensive overview of current research investigating plant lipids, including their structures, metabolism, and functions.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Institute of Pharmacy, Nirma University, Gujarat, 382481, India.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) discovery has added a new paradigm to our understanding of cholesterol homeostasis and lipid metabolism. Since its discovery, PCSK9 inhibitors have become a widely investigated therapeutic class for lipid management in cardiovascular diseases and hypercholesterolemia. Scientists have explored different approaches for PCSK9 inhibition, such as monoclonal antibodies (mAbs), gene silencing and gene editing techniques, vaccines, mimetic peptides, and small molecules.
View Article and Find Full Text PDFPostgrad Med J
January 2025
Department of Medical Biochemistry, Faculty of Medicine, Niğde Omer Halisdemir University, Niğde, 51000, Turkey.
Background: Epoxyeicosatrienoic acids (EETs) are closely associated with lipoprotein metabolism, and changes in lipid profiles potentially affect their levels and functions. Given the alterations in lipid metabolism after cholecystectomy, this study aimed to investigate the levels of four EET regioisomers (free and esterified) and lipid profiles in patients with cholelithiasis after laparoscopic cholecystectomy (LC) and explore correlations between these parameters.
Methods: This prospective study involved 40 patients with symptomatic cholelithiasis who underwent LC.
Biomarkers
January 2025
PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland.
Background: Growing evidence indicates that noncombustible products could be a tobacco harm reduction tool for smokers who do not quit. The Tobacco Heating System (THS) emits substantially lower levels of harmful cigarette smoke constituents, and previous randomized clinical studies showed improved levels of biomarkers of potential harm (BoPH) linked to smoking-related disease.
Methods: In this cross-sectional study of healthy participants (n = 982) who (i) smoked cigarettes, (ii) had voluntarily switched from smoking to THS use, or (iii) formerly smoked, blood and urine samples were assayed for nine BoPH.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!