The avian-origin influenza A virus polymerase is restricted in human cells. This restriction has been associated with species differences in host factor ANP32A. Avian ANP32A supports the activity of an avian-origin polymerase. However, the avian-origin polymerase is incompatible with human ANP32A. Avian ANP32A proteins harbor an additional 33 amino acids compared to human ANP32A proteins, which are crucial for their ability to support the avian-origin influenza virus polymerase. Here, we elucidate the interactions between ANP32A proteins and the influenza A virus polymerase using split luciferase complementation assays, coimmunoprecipitation, and split Venus interaction assays. We show greater interaction of chicken ANP32A than human ANP32A with the viral polymerase and visualize these interactions in the cell nucleus. We demonstrate that the 33 amino acids of chicken ANP32A and the PB2 627 domain of viral polymerase complex both contribute to this enhanced interaction. Finally, we show how these interactions are affected by the presence of viral RNA and the processivity of the polymerase, giving insights into the way that ANP32A might act during virus infection. Successful zoonotic transmission of influenza A virus into humans can lead to pandemics in an immunologically naive population. Host-encoded ANP32A proteins are required to support influenza A virus polymerase activity, and species differences in ANP32A can restrict the host range of influenza virus. Understanding how ANP32A proteins support the viral polymerase and how differences in ANP32A affect the ability of the polymerase to coopt these proteins will enhance our understanding of viral replication and species restriction as well as suggesting targeted antiviral approaches to treat influenza virus infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7000967PMC
http://dx.doi.org/10.1128/JVI.01353-19DOI Listing

Publication Analysis

Top Keywords

influenza virus
32
virus polymerase
20
anp32a proteins
20
anp32a
15
polymerase
12
human anp32a
12
viral polymerase
12
virus
9
influenza
8
host factor
8

Similar Publications

Respiratory viral infections continue to cause pandemic and epidemic outbreaks in humans and animals. Under steady-state conditions, alveolar macrophages (AlvMϕ) fulfill a multitude of tasks in order to maintain tissue homeostasis. Due to their anatomic localization within the deep lung, AlvMϕ are prone to detect and react to inhaled viruses and thus play a role in the early pathogenesis of several respiratory viral infections.

View Article and Find Full Text PDF

Madin-Darby Canine Kidney (MDCK) cells are a key cell line for influenza vaccine production, due to their high viral yield and low mutation resistance. In our laboratory, we established a tertiary cell bank (called M60) using a standard MDCK cell line imported from American Type Culture Collection (ATCC) in the USA. Due to their controversial tumourigenicity, we domesticated non-tumourigenic MDCK cells (named CL23) for influenza vaccine production via monoclonal screening in the early stage of this study, and the screened CL23 cells were characterised based on their low proliferative capacity, which had certain limitations in terms of expanding their production during cell resuscitation.

View Article and Find Full Text PDF

The Role of Bone Marrow Stromal Cell Antigen 2 (BST2) in the Migration of Dendritic Cells to Lymph Nodes.

Int J Mol Sci

December 2024

College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.

Bone marrow stromal antigen 2 (BST2) is a host-restriction factor that plays multiple roles in the antiviral defense of innate immune responses, including the inhibition of viral particle release from virus-infected cells. BST2 may also be involved in the endothelial adhesion and migration of monocytes, but its importance in the immune system is still unclear. Immune cell adhesion and migration are closely related to the initiation of immune responses.

View Article and Find Full Text PDF

The Molecular Basis of Asthma Exacerbations Triggered by Viral Infections: The Role of Specific miRNAs.

Int J Mol Sci

December 2024

Department and Clinic of Paediatrics, Allergology and Cardiology, Wroclaw Medical University, ul. Chałubińskiego 2a, 50-368 Wrocław, Poland.

Viral respiratory infections are a significant clinical problem among the pediatric population and are one of the leading causes of hospitalization. Most often, upper respiratory tract infections are self-limiting. Still, those that involve the lower respiratory tract are usually associated with asthma exacerbations, leading to worsening or even the initiation of the disease.

View Article and Find Full Text PDF

Small nucleolar RNAs (snoRNAs) are non-coding RNAs (ncRNAs) that regulate many cellular processes. Changes in the profiles of cellular ncRNAs and those secreted in exosomes are observed during viral infection. In our study, we analysed differences in expression profiles of snoRNAs isolated from exosomes of influenza (IAV)-infected and non-infected MDCK cells using high-throughput sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!