High-throughput TCR sequencing allows interrogation of the human TCR repertoire, potentially connecting TCR sequences to antigenic targets. Unlike the highly polymorphic MHC proteins, monomorphic Ag-presenting molecules such as MR1, CD1d, and CD1b present Ags to T cells with species-wide TCR motifs. CD1b tetramer studies and a survey of the 27 published CD1b-restricted TCRs demonstrated a TCR motif in humans defined by the TCR β-chain variable gene 4-1 (TRBV4-1) region. Unexpectedly, TRBV4-1 was involved in recognition of CD1b regardless of the chemical class of the carried lipid. Crystal structures of two CD1b-specific TRBV4-1 TCRs show that germline-encoded residues in CDR1 and CDR3 regions of TRBV4-1-encoded sequences interact with each other and consolidate the surface of the TCR. Mutational studies identified a key positively charged residue in TRBV4-1 and a key negatively charged residue in CD1b that is shared with CD1c, which is also recognized by TRBV4-1 TCRs. These data show that one TCR V region can mediate a mechanism of recognition of two related monomorphic Ag-presenting molecules that does not rely on a defined lipid Ag.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904517PMC
http://dx.doi.org/10.4049/jimmunol.1900872DOI Listing

Publication Analysis

Top Keywords

tcr
9
tcr β-chain
8
monomorphic ag-presenting
8
ag-presenting molecules
8
trbv4-1 tcrs
8
charged residue
8
trbv4-1
5
β-chain motif
4
motif biases
4
biases recognition
4

Similar Publications

Characterization of Tumor Antigens from Multi-omics Data: Computational Approaches and Resources.

Genomics Proteomics Bioinformatics

January 2025

Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA.

Tumor-specific antigens, also known as neoantigens, have potential utility in anti-cancer immunotherapy, including immune checkpoint blockade (ICB), neoantigen-specific T cell receptor-engineered T (TCR-T), chimeric antigen receptor T (CAR-T), and therapeutic cancer vaccines (TCVs). After recognizing presented neoantigens, the immune system becomes activated and triggers the death of tumor cells. Neoantigens may be derived from multiple origins, including somatic mutations (single nucleotide variants, insertion/deletions, and gene fusions), circular RNAs, alternative splicing, RNA editing, and polymorphic microbiome.

View Article and Find Full Text PDF

Unveiling cross-reactivity: implications for immune response modulation in cancer.

Brief Bioinform

November 2024

Program of Cell and Gene Therapy, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil.

Antigen recognition by CD8+ T-cell receptors (TCR) is crucial for immune responses to pathogens and tumors. TCRs are cross-reactive, a single TCR can recognize multiple peptide-Human Leukocyte Antigen (HLA) complexes. The study of cross-reactivity can support the development of therapies focusing on immune modulation, such as the expansion of pre-existing T-cell clones to fight pathogens and tumors.

View Article and Find Full Text PDF

Elucidating the relationships between a class I peptide antigen, a CD8 T cell receptor (TCR) specific to that antigen, and the T cell phenotype that emerges following antigen stimulation, remains a mostly unsolved problem, largely due to the lack of large data sets that can be mined to resolve such relationships. Here, we describe Antigen-TCR Pairing and Multiomic Analysis of T-cells (APMAT), an integrated experimental-computational framework designed for the high-throughput capture and analysis of CD8 T cells, with paired antigen, TCR sequence, and single-cell transcriptome. Starting with 951 putative antigens representing a comprehensive survey of the SARS-CoV-2 viral proteome, we utilize APMAT for the capture and single cell analysis of CD8 T cells from 62 HLA A*02:01 COVID-19 participants.

View Article and Find Full Text PDF

Antibodies and helper T cells play important roles in SARS-CoV-2 infection and vaccination. We sequenced B- and T-cell receptor repertoires (BCR/TCR) from the blood of 251 infectees, vaccinees, and controls to investigate whether features of these repertoires could predict subjects' SARS-CoV-2 neutralizing antibody titer (NAbs), as measured by enzyme-linked immunosorbent assay (ELISA). We sequenced recombined immunoglobulin heavy-chain (IGH), TCRβ (TRB), and TCRδ (TRD) genes in parallel from all subjects, including select B- and T-cell subsets in most cases, with a focus on their hypervariable CDR3 regions, and correlated this AIRRseq data with demographics and clinical findings from subjects' electronic health records.

View Article and Find Full Text PDF

Background: Reovirus (RV) is an oncolytic virus with natural tropism for cancer cells. We previously showed that RV administration in multiple myeloma (MM) patients was safe, but disease control associated with viral replication in the cancer cells was not observed. The combination with proteasome inhibitors (PIs) has shown to enhance RV therapeutic activity, but the mechanisms of action have not been fully elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!