By comprehensive structure design and first-principles calculations, we report a novel two-dimensional (2D) BeP nanomaterial with exotic structural and properties. This BeP 2D material is formed by a couple honeycomb sheets by slab staggered stacking and strong interlayer bondings. It behaves as a natural 2D semiconductor with several notable properties: a modest bandgap (~1.34 eV), high room-temperature electron mobility (~10 cm V s) and high visible-light absorption coefficient (~10 cm); Moreover, due to the unique stacking topology, BeP may display distinctive direction-dependent electric transport by the anisotropic polarity of electron and hole mobilities, that is, it exhibits n-type (electron mobility > hole mobility) along the armchair direction while acts as p -type (hole mobility > electron mobility) in the zigzag direction, thus promising for applications in nanoelectronics. The BeP has good dynamic and thermal stabilities and is also the lowest-energy structure of 2D space indicated by particle swarm search, implying the high feasibility of experimental synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ab54f9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!