Dissolved organic matter in the deep TALDICE ice core: A nano-UPLC-nano-ESI-HRMS method.

Sci Total Environ

Institute of Polar Sciences CNR, Via Torino 155, 30172 Mestre (VE), Italy; Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30170 Mestre, VE, Italy.

Published: January 2020

Trace organic compounds in deep ice cores supply important paleoclimatic information. Untargeted analyses of dissolved organic matter provide an overview of molecular species in ice samples however, sample volumes usually required for these analyses are generally not available from deep ice cores. Here, we developed an analytical method using a nano-UPLC-nano-ESI-HRMS to detect major molecular species in ice cores. Samples (4 µL) from the TALos Dome Ice CorE (TALDICE), allowed investigating molecular species across a range of depths including during glacial and interglacial periods. We detected 317 chemical species that were tentatively assigned to fatty acids, hydroxy fatty acids and their degradation products (oxo-fatty acids and dicarboxylic acids), as well as oxidation byproducts of isoprene and monoterpenes. These compounds indicate that the main sources of the organic fraction are microbes as well as primary and secondary aerosols. Interglacial samples encompass a wide range of species including compounds from the oxidation of isoprene and monoterpenes as well as unsaturated fatty acids, while the glacial samples contained less diverse species. This difference may be due to decreased temperatures during the glacial period inhibiting terrestrial vegetation growth and increasing the sea ice extent, thereby weakening the emission sources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.134432DOI Listing

Publication Analysis

Top Keywords

ice cores
12
molecular species
12
fatty acids
12
dissolved organic
8
organic matter
8
ice core
8
deep ice
8
species ice
8
isoprene monoterpenes
8
ice
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!