MicroRNA-155 and microRNA-181a, via HO-1, participate in regulating the immunotoxicity of cadmium in the kidneys of exposed Cyprinus carpio.

Fish Shellfish Immunol

College of Fisheries, Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Henan province, PR China. Electronic address:

Published: December 2019

Cadmium (Cd) is a nonessential metal that is a contaminant in aquatic ecosystems. Cd can accumulate in aquatic animals, leading to detrimental effects in tissues, and Cd exposure can induce immunotoxicity in fish. MicroRNAs (miRNAs) play critical roles in immune responses, yet the participation of miRNAs in Cd-induced immunotoxicity remains poorly understood. The present study evaluated the effects of Cd exposure on the immune responses and the mRNAs and miRNAs expressions of immune-related genes in Cyprinus carpio (C. carpio). Then, microRNA-155 (miR-155) was overexpressed and microRNA-181a (miR-181a) was knocked down to determine which miRNA plays a key role in the immune response to Cd. The results showed that 0.5 mg/L Cd significantly decreased the activity of alkaline phosphatase (AKP) and acid phosphatase (ACP) in the kidneys of C. carpio. Cd exposure upregulated the mRNA expressions of interleukin (IL)-1β, IL-8, nuclear factor-kappa B (NF-κB), tumour necrosis factor-α (TNF-α), and Toll-like receptor 4(TLR-4) and downregulated those of IL-10 and heme oxygenase-1 (HO-1) in C. carpio kidneys. Cd exposure also led to upregulation of miR-155 and miR-181a expressions. Furthermore, AKP and ACP activity in the kidneys was markedly changed after intraperitoneal injection of C. carpio with miR-155 agomir and miR-181a antagomir. All detected mRNA expressions were significantly decreased after injection of miR-155 agomir, and IL-10, NF-κB, TNF-α, and HO-1 mRNA expressions were markedly increased after injection of miR-181a antagomir. The results of this study demonstrate that Cd exposure can immunocompromise C. carpio by targeting HO-1 through miR-155 and miR-181a. This is the first study to reveal that Cd exposure induces immunotoxicity through miR-155 and miR-181a in the kidneys of C. carpio.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2019.11.010DOI Listing

Publication Analysis

Top Keywords

mrna expressions
12
mir-155 mir-181a
12
carpio
8
cyprinus carpio
8
immune responses
8
kidneys carpio
8
mir-155 agomir
8
mir-181a antagomir
8
exposure
6
mir-155
6

Similar Publications

Dissecting the cellular architecture and genetic circuitry of the soybean seed.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616.

Seeds are complex structures composed of three regions, embryo, endosperm, and seed coat, with each further divided into subregions that consist of tissues, cell layers, and cell types. Although the seed is well characterized anatomically, much less is known about the genetic circuitry that dictates its spatial complexity. To address this issue, we profiled mRNAs from anatomically distinct seed subregions at several developmental stages.

View Article and Find Full Text PDF

Background: The antigen Na-GST-1, expressed by the hookworm Necator americanus, plays crucial biochemical roles in parasite survival. This study explores the development of mRNA vaccine candidates based on Na-GST-1, building on the success of recombinant Na-GST-1 (rNa-GST-1) protein, currently assessed as a subunit vaccine candidate, which has shown promise in preclinical and clinical studies.

Methodology/findings: By leveraging the flexible design of RNA vaccines and protein intracellular trafficking signal sequences, we developed three variants of Na-GST-1 as native (cytosolic), secretory, and plasma membrane-anchored (PM) antigens.

View Article and Find Full Text PDF

Mycobacterium abscessus is a rapidly growing nontuberculous mycobacterium that causes severe pulmonary infections. Recent studies indicate that ferroptosis may play a critical role in the pathogenesis of M. abscessus pulmonary disease.

View Article and Find Full Text PDF

Most gene therapies exert their actions via manipulation of hepatocytes (parenchymal cells) and the reasons behind the suboptimal performance of synthetic mRNA in non-parenchymal cells (NPC) such as Kupffer cells (KC), and liver macrophages, remain unclear. Here, the spatio-temporal distribution of mRNA encoding enhanced green fluorescent protein (Egfp), siRNA, or both co-encapsulated into lipid nanoparticles (LNP) in the liver in vivo using real-time intravital imaging is investigated. Although both KC and hepatocytes demonstrate comparable high and rapid uptake of mRNA-LNP and siRNA-LNP in vivo, the translation of Egfp mRNA occurs exclusively in hepatocytes during intravital imaging.

View Article and Find Full Text PDF

Cell-Type Specific miRNA Regulatory Network Responses to ABA Stress Revealed by Time Series Transcriptional Atlases in Arabidopsis.

Adv Sci (Weinh)

January 2025

School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China.

In plants, microRNAs (miRNAs) participate in complex gene regulatory networks together with the transcription factors (TFs) in response to biotic and abiotic stresses. To date, analyses of miRNAs-induced transcriptome remodeling are at the whole plant or tissue levels. Here, Arabidopsis's ABA-induced single-cell RNA-seq (scRNA-seq) is performed at different stages of time points-early, middle, and late.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!