Functionally Distinct Connectivity of Developmentally Targeted Striosome Neurons.

Cell Rep

Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Department of Neurology, UCSF, San Francisco, CA 94158, USA. Electronic address:

Published: November 2019

One long-standing model of striatal function divides the striatum into compartments called striosome and matrix. While some anatomical evidence suggests that these populations represent distinct striatal pathways with differing inputs and outputs, functional investigation has been limited by the methods for identifying and manipulating these populations. Here, we utilize hs599 mice as a new tool for targeting striosome projection neurons and testing their functional connectivity. Extending anatomical work, we demonstrate that striosome neurons receive greater synaptic input from prelimbic cortex, whereas matrix neurons receive greater input from primary motor cortex. We also identify functional differences in how striosome and matrix neurons process excitatory input, providing the first electrophysiological method for delineating striatal output neuron subtypes. Lastly, we provide the first functional demonstration that striosome neurons are the predominant striatal output to substantia nigra pars compacta dopamine neurons. These results identify striosome and matrix as functionally distinct striatal pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866662PMC
http://dx.doi.org/10.1016/j.celrep.2019.09.076DOI Listing

Publication Analysis

Top Keywords

striosome neurons
12
striosome matrix
12
functionally distinct
8
distinct striatal
8
striatal pathways
8
neurons receive
8
receive greater
8
matrix neurons
8
striatal output
8
striosome
7

Similar Publications

Optimal decision-making requires consideration of internal and external contexts. Biased decision-making is a transdiagnostic symptom of neuropsychiatric disorders. We created a computational model demonstrating how the striosome compartment of the striatum constructs a context-dependent mathematical space for decision-making computations, and how the matrix compartment uses this space to define action value.

View Article and Find Full Text PDF

Circuit influences on the midbrain dopamine system are crucial to adaptive behavior and cognition. Recent developments in the study of neuropeptide systems have enabled high-resolution investigations of the intersection of neuromodulatory signals with basal ganglia circuitry, identifying the nociceptin/orphanin FQ (N/OFQ) endogenous opioid peptide system as a prospective regulator of striatal dopamine signaling. Using a prepronociceptin-Cre reporter mouse line, we characterized highly selective striosomal patterning of Pnoc mRNA expression in mouse dorsal striatum, reflecting the early developmental expression of Pnoc.

View Article and Find Full Text PDF

Functional pathology of neuroleptic-induced dystonia based on the striatal striosome-matrix dopamine system in humans.

J Neurol Neurosurg Psychiatry

December 2024

Research Organization of Science and Technology, Ritsumeikan University, Kyoto, Japan

Neuroleptic-induced dystonia is a source of great concern in clinical practice because of its iatrogenic nature which can potentially lead to life-threatening conditions. Since all neuroleptics (antipsychotics) share the ability to block the dopamine D-type receptors (DRs) that are highly enriched in the striatum, this drug-induced dystonia is thought to be caused by decreased striatal DR activity. However, how associations of striatal DR inactivation with dystonia are formed remains elusive.

View Article and Find Full Text PDF

Striosome circuitry stimulation inhibits striatal dopamine release and locomotion.

J Neurosci

December 2024

Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan

The mammalian striatum is divided into two types of anatomical structures: the island-like, mu opioid receptor (MOR)-rich striosome compartment and the surrounding matrix compartment. Both compartments have two types of spiny projection neurons (SPNs), dopamine receptor D1 (D1R)-expressing direct pathway SPNs (dSPNs) and dopamine receptor D2 (D2R)-expressing indirect pathway SPNs. These compartmentalized structures have distinct roles in the development of movement disorders, although the functional significance of the striosome compartment for motor control and dopamine regulation remains to be elucidated.

View Article and Find Full Text PDF

Basal ganglia: Uniting circuit logic between matrix and striosome.

Curr Biol

November 2024

Center for Neuroscience, Department of Neurobiology, The University of Pittsburgh, Pittsburgh, PA 15213, USA. Electronic address:

A new study has identified a novel direct-indirect circuit architecture connecting the striosome compartment of the striatum with midbrain dopamine neurons. This circuit has the potential to integrate limbic and sensorimotor functions and to exert substantial control over biological reinforcement leaning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!