Endothelial microvesicles induced by physiological cyclic stretch inhibit ICAM1-Dependent leukocyte adhesion.

Exp Cell Res

Institute of Mechanobiology & Medical Engineering, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China. Electronic address:

Published: January 2020

Physiological cyclic stretch (CS), caused by artery deformation following blood pressure, plays important roles in the homeostasis of endothelial cells (ECs). Here, we detected the effect of physiological CS on endothelial microvesicles (EMVs) and their roles in leukocyte recruitment to ECs, which is a crucial event in EC inflammation. The results showed compared with the static treatment, pretreatment of 5%-CS-derived EMVs with ECs significantly decreased the adherence level of leukocytes. Comparative proteomic analysis revealed 373 proteins differentially expressed between static-derived and 5%-CS-derived EMVs, in which 314 proteins were uniquely identified in static-derived EMVs, 34 proteins uniquely in 5%-CS-derived EMVs, and 25 proteins showed obvious differences. Based on the proteomic data, Ingenuity Pathways Analysis predicted intercellular adhesion molecule 1 (ICAM1) in EMVs might be the potential molecule involved in EC-leukocyte adhesion. Western blot and flow cytometry analyses confirmed the significant decrease of ICAM1 in 5%-CS-derived EMVs, which subsequently inhibited the phosphorylation of VE-cadherin at Tyr731 in target ECs. Moreover, leukocyte adhesion was obviously decreased after pretreatment with ICAM1 neutralizing antibody. Our present research suggested that physiological stretch changes the components of EMVs, which in turn inhibits leukocyte adhesion. ICAM1 expressed on CS-induced EMVs may play an important role in maintaining EC homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2019.111710DOI Listing

Publication Analysis

Top Keywords

5%-cs-derived emvs
16
leukocyte adhesion
12
emvs
9
endothelial microvesicles
8
physiological cyclic
8
cyclic stretch
8
proteins uniquely
8
emvs proteins
8
adhesion
5
microvesicles induced
4

Similar Publications

Endothelial microvesicles induced by physiological cyclic stretch inhibit ICAM1-Dependent leukocyte adhesion.

Exp Cell Res

January 2020

Institute of Mechanobiology & Medical Engineering, School of Life Sciences &Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China. Electronic address:

Physiological cyclic stretch (CS), caused by artery deformation following blood pressure, plays important roles in the homeostasis of endothelial cells (ECs). Here, we detected the effect of physiological CS on endothelial microvesicles (EMVs) and their roles in leukocyte recruitment to ECs, which is a crucial event in EC inflammation. The results showed compared with the static treatment, pretreatment of 5%-CS-derived EMVs with ECs significantly decreased the adherence level of leukocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!