A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evidence for a role of protein phosphorylation in the maintenance of the cnidarian-algal symbiosis. | LitMetric

Evidence for a role of protein phosphorylation in the maintenance of the cnidarian-algal symbiosis.

Mol Ecol

Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

Published: December 2019

The endosymbiotic relationship between cnidarians and photosynthetic dinoflagellate algae provides the foundation of coral reef ecosystems. This essential interaction is globally threatened by anthropogenic disturbance. As such, it is important to understand the molecular mechanisms underpinning the cnidarian-algal association. Here we investigated phosphorylation-mediated protein signalling as a mechanism of regulation of the cnidarian-algal interaction, and we report on the generation of the first phosphoproteome for the coral model system Aiptasia. Mass spectrometry-based phosphoproteomics using data-independent acquisition allowed consistent quantification of over 3,000 phosphopeptides totalling more than 1,600 phosphoproteins across aposymbiotic (symbiont-free) and symbiotic anemones. Comparison of the symbiotic states showed distinct phosphoproteomic profiles attributable to the differential phosphorylation of 539 proteins that cover a broad range of functions, from receptors to structural and signal transduction proteins. A subsequent pathway enrichment analysis identified the processes of "protein digestion and absorption," "carbohydrate metabolism," and "protein folding, sorting and degradation," and highlighted differential phosphorylation of the "phospholipase D signalling pathway" and "protein processing in the endoplasmic reticulum." Targeted phosphorylation of the phospholipase D signalling pathway suggests control of glutamate vesicle trafficking across symbiotic compartments, and phosphorylation of the endoplasmic reticulum machinery suggests recycling of symbiosome-associated proteins. Our study shows for the first time that changes in the phosphorylation status of proteins between aposymbiotic and symbiotic Aiptasia anemones may play a role in the regulation of the cnidarian-algal symbiosis. This is the first phosphoproteomic study of a cnidarian-algal symbiotic association as well as the first application of quantification by data-independent acquisition in the coral field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972648PMC
http://dx.doi.org/10.1111/mec.15298DOI Listing

Publication Analysis

Top Keywords

cnidarian-algal symbiosis
8
data-independent acquisition
8
differential phosphorylation
8
phosphorylation
6
cnidarian-algal
5
symbiotic
5
evidence role
4
role protein
4
protein phosphorylation
4
phosphorylation maintenance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!