When isolating binders from yeast displayed combinatorial libraries, a soluble, recombinantly expressed form of the target protein is typically utilized. As an alternative, we describe the use of target proteins displayed as surface fusions on magnetized yeast cells. In our strategy, the target protein is coexpressed on the yeast surface with an iron oxide binding protein; incubation of these yeast cells with iron oxide nanoparticles results in their magnetization. Subsequently, binder cells that interact with the magnetized target cells can be isolated using a magnet. Using a known binder-target pair with modest binding affinity ( ≈ 400 nM), we showed that a binder present at low frequency (1 in 10) could be enriched more than 100-fold, in a single round of screening, suggesting feasibility of screening combinatorial libraries. Subsequently, we screened yeast display libraries of Sso7d and nanobody variants against yeast displayed targets to isolate binders specific to the cytosolic domain of the mitochondrial membrane protein TOM22 ( ≈ 272-1934 nM) and the extracellular domain of the c-Kit receptor ( ≈ 93 to > 2000 nM). Additional studies showed that the TOM22 binders identified using this approach could be used for the enrichment of mitochondria from cell lysates, thereby confirming binding to the native mitochondrial protein. The ease of expressing a membrane protein or a domain thereof as a yeast cell surface fusion-in contrast to recombinant soluble expression-makes the use of yeast-displayed targets particularly attractive. Therefore, we expect the use of magnetized yeast cell targets will enable efficient isolation of binders to membrane proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acscombsci.9b00147DOI Listing

Publication Analysis

Top Keywords

magnetized yeast
12
yeast cell
12
membrane protein
12
yeast
9
yeast display
8
display libraries
8
cell targets
8
efficient isolation
8
yeast displayed
8
combinatorial libraries
8

Similar Publications

Background: Vulvovaginal candidiasis (VVC), caused primarily by Candida albicans, is currently treated with either prescription or over-the-counter antifungal drugs, often with variable efficacy and relapses. New and improved therapeutic strategies, including drug-free treatment alternatives, are needed. Upon overgrowth or environmental triggers, C.

View Article and Find Full Text PDF

Identification of Antigens Recognized by Murine Intestinal IgAs by a Gel-Independent Immunoproteomic Approach.

J Proteome Res

January 2025

Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.

As part of the intestinal microbiota, can elicit a humoral response in the gastrointestinal tract (GIT) that is mainly directed toward hyphal antigens. This response has been implicated in controlling the invasive form of the fungus and maintaining the yeast as an innocuous commensal. However, the specific targets of this response are still unknown.

View Article and Find Full Text PDF

HSP70 chaperones play pivotal roles in facilitating protein folding, refolding, and disaggregation through their binding and releasing activities. This intricate process is further supported by J-domain proteins (JDPs), also known as DNAJs or HSP40s, which can be categorized into classes A and B. In yeast, these classes are represented by Ydj1 and Sis1, respectively.

View Article and Find Full Text PDF

J-domain proteins (JDPs) are essential cochaperones of heat shock protein 70 (Hsp70), as they bind and deliver misfolded polypeptides while also stimulating ATPase activity, thereby mediating the refolding process and assisting Hsp70 in maintaining cellular proteostasis. Despite their importance, detailed structural information about JDP‒Hsp70 complexes is still being explored due to various technical challenges. One major challenge is the lack of more detailed structural data on full-length JDPs.

View Article and Find Full Text PDF

In this study, metagenomic analysis was employed to investigate the bacterial communities in the Muan tidal mudflat of the Republic of Korea. We used metagenomic analysis to identify the microbial community in tidal soil dominated by Proteobacteria. From this environment, the bacterial strain, sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!