Development of a novel bio-inspired "cotton-like" collagen aggregate/chitin based biomaterial with a biomimetic 3D microstructure for efficient hemostasis and tissue repair.

J Mater Chem B

College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, WeiYang District, Xi'an 710021, Shaanxi, China. and National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, WeiYang District, Xi'an 710021, Shaanxi, China.

Published: December 2019

Hemostatic materials based on collagen and chitin are commonly assessed with regard to their topical absorbability and bioactivity. However, their clinical application faces challenges such as relatively long hemostatic and wound healing times, single function, as well as wound bleeding in patients with blood diseases. Herein, a novel bio-inspired "cotton-like" collagen aggregate/chitin based biomaterial for rapid hemostatic and tissue repair (V-3D-Ag-col) was fabricated by a specific gradient-removal solvent approach. Significantly, for the first time, an advanced collagen aggregate (Ag-col) composed of typical D-periodic cross-striated collagen fibrils and thick collagen fiber bundles was used instead of traditional collagen molecules (Col) to construct a hemostatic material. The target material showed a biomimetic 3D microstructure and "cotton-like" appearance, as expected, which were conducive to platelet adhesion and aggregation. The fabricated V-3D-Ag-col exhibited superior thermo-stability, hemostatic activity and biodegradability. More importantly, V-3D-Ag-col could significantly promote cell growth and proliferation. Further, V-3D-Ag-col could accelerate the wound healing process better than the same material based on conventional collagen (V-3D-Col). In consequence, V-3D-Ag-col has the potential to become a new generation of collagen-absorbable functional hemostatic materials. Furthermore, Ag-col can replace the currently available conventional collagen materials as raw materials for the new generation of collagen-based biomedical materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9tb02028dDOI Listing

Publication Analysis

Top Keywords

collagen
9
novel bio-inspired
8
bio-inspired "cotton-like"
8
"cotton-like" collagen
8
collagen aggregate/chitin
8
aggregate/chitin based
8
based biomaterial
8
biomimetic microstructure
8
tissue repair
8
hemostatic materials
8

Similar Publications

Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.

View Article and Find Full Text PDF

(L.) DC., commonly known as Japanese pepper, is a deciduous shrub native to East Asia.

View Article and Find Full Text PDF

Polyphenolic Hispolon Derived from Medicinal Mushrooms of the and Genera Promotes Wound Healing in Hyperglycemia-Induced Impairments.

Nutrients

January 2025

Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Yanpu Township 90741, Taiwan.

: This study investigated the wound-healing potential of hispolon, a polyphenolic pigment derived from medicinal mushrooms, under diabetic conditions using both in vitro and in vivo models. : In the in vitro assays, L929 fibroblast cells exposed to high glucose (33 mmol/L) were treated with hispolon at concentrations of 2.5, 5, 7.

View Article and Find Full Text PDF

The development of greener substitutes for plastics is gaining massive importance in today's society. This also involves the medical field, where disposable materials are used to grant sterility. Here, a novel protocol using only a water-based solvent for the preparation of bio-based composite foams of actual β-chitin and collagen type I is presented.

View Article and Find Full Text PDF

The necessity to mitigate the intrinsic issues associated with tissue or organ transplants, in order to address the rising prevalence of diseases attributable to increased life expectancy, provides a rationale for the pursuit of innovation in the field of biomaterials. Specifically, biopolymeric aerogels represent a significant advancement in the field of tissue engineering, offering a promising solution for the formation of temporary porous matrices that can replace damaged tissues. However, the functional characteristics of these materials are inadequate, necessitating the implementation of matrix reinforcement methods to enhance their performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!