In the current work, we developed a novel method to fabricate hybrid surfaces consisting of mixed hydrophilic/superhydrophobic properties. These surfaces specifically consist of a regular array of hydrophilic pillars (displaying a receding contact angle lower than 90°) surrounded by a superhydrophobic thinner layer made via the electropolymerization of a fluorinated monomer. Then, we determined the wetting properties of various forms of this complex surface, i.e., displaying different surface properties, by specifically determining their advancing (θ) and receding (θ) contact angles. Two main parameters were varied: the pillar density (from 21.2% to 6.5% based on using a spacing d between pillars varying from 25 to 45 micrometers) and the polymer charge density (from 0 to 100 mC cm). We observed that, for low charge density values, only the ground surface was covered by the hydrophobic polymers; while for higher charge density values, polymerization reached higher levels on the lateral surfaces of the nonconductive cylindrical pillars, eventually up to their top surfaces and covering them for the highest charge densities. This feature gave us an additional parameter that we could use to control the surface wettability. We also found that contact angles (advancing and receding) increased markedly with increasing polymer charge density above a critical value (which was higher for receding angles). And we measured advancing and receding contact angles to, respectively, increase and decrease with increasing pillar density. We interpreted qualitatively these behaviors, the main point being the importance of the impalement (null, partial or total).

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9sm01402kDOI Listing

Publication Analysis

Top Keywords

charge density
16
receding contact
12
advancing receding
12
contact angles
12
hybrid surfaces
8
wetting properties
8
pillar density
8
polymer charge
8
density values
8
density
6

Similar Publications

Machine learning interatomic potentials, as a modern generation of classical force fields, take atomic environments as input and predict the corresponding atomic energies and forces. We challenge the commonly accepted assumption that the contribution of an atom can be learned from the short-range local environment of that atom. We employ density functional theory calculations to quantify the decay of the induced electron density and electrostatic potential in response to local perturbations throughout insulating, semiconducting and metallic samples of different dimensionalities.

View Article and Find Full Text PDF

We have conducted a systematic study employing density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) to explore the gas sensing capabilities of nitrogen-doped single vacancy graphene quantum dots (SV/3N) decorated with transition metals (TM = Mn, Co, Cu). We have studied the interactions between TM@SV/3N and four different target gases (AsH, NH, PH, and HS) through the computation of adsorption energies, charge transfer, noncovalent interaction, density of states, band gap, and work function for 12 distinct adsorption systems. Our comprehensive analysis included an in-depth assessment of sensors' stability, sensitivity, selectivity, and reusability for practical applications.

View Article and Find Full Text PDF

The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.

View Article and Find Full Text PDF

Direct Observation of Hybridization Between Co 3d and S 2p Electronic Orbits: Moderating Sulfur Covalency to Pre-Activate Sulfur-Redox in Lithium-Sulfur Batteries.

Adv Sci (Weinh)

December 2024

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China.

Lithium-sulfur batteries (LSBs) offer high energy density and environmental benefits hampered by the shuttle effect related to sluggish redox reactions of long-chain lithium polysulfides (LiPSs). However, the fashion modification of the d-band center in separators is still ineffective, wherein the mechanism understanding always relies on theoretical calculations. This study visibly probed the evolution of the Co 3d-band center during charge and discharge using advanced inverse photoemission spectroscopy/ultraviolet photoemission spectroscopy (IPES/UPS), which offers reliable evidence and are consistent well with theoretical calculations.

View Article and Find Full Text PDF

Porous carbon adsorption represents a critical component of CCUS technologies, with microporous structures playing an essential role in CO capture. The preparation of porous carbon introduces intrinsic defects, making it essential to consider both pore size and these defects for a comprehensive understanding of the CO adsorption mechanism. This study investigates the mechanisms of CO adsorption influenced by intrinsic defects and pore size using multiscale methods, incorporating experimental validation, Grand Canonical Monte Carlo simulations, and Density Functional Theory simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!