Exposure to ionizing radiation associated with highly energetic and charged heavy particles is an inherent risk astronauts face in long duration space missions. We have previously considered the transcriptional effects that three levels of radiation (0.3 Gy, 1.5 Gy, and 3.0 Gy) have at an immediate time point (1 hr) post-exposure [1]. Our analysis of these results suggest effects on transcript levels that could be modulated at lower radiation doses [2]. In addition, a time dependent effect is likely to be present. Therefore, in order to develop a lab-on-a-chip approach for detection of radiation exposure in terms of both radiation level and time since exposure, we developed a time- and dose-course study to determine appropriate sensitive and specific transcript biomarkers that are detectable in blood samples. The data described herein was developed from a study measuring exposure to 0.15 Gy, 0.30 Gy, and 1.5 Gy of radiation at 1 hr, 2 hr, and 6 hr post-exposure using Affymetrix® GeneChip® PrimeView™ microarrays. This report includes raw gene expression data files from the resulting microarray experiments representing typical radiation exposure levels an astronaut may experience as part of a long duration space mission. The data described here is available in NCBI's Gene Expression Omnibus (GEO), accession GSE63952.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6806397PMC
http://dx.doi.org/10.1016/j.dib.2019.104624DOI Listing

Publication Analysis

Top Keywords

radiation exposure
12
radiation
8
ionizing radiation
8
long duration
8
duration space
8
data described
8
gene expression
8
exposure
6
dataset dose
4
dose time-dependent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!