Electrically control amplified spontaneous emission in colloidal quantum dots.

Sci Adv

LUMINOUS! Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore, Singapore.

Published: October 2019

Colloidal quantum dots (CQDs) are highly promising materials for light amplification thanks to their efficient photoluminescence, tunable emission wavelength and low-cost synthesis. Unfortunately, CQDs are suffering from band-edge state degeneracy which demands multiple excitons to achieve population inversion. As a result, non-radiative Auger recombination increases the lasing threshold and limits the gain lifetime. Here, benefiting from the negative charging, we demonstrate that the amplified spontaneous emission (ASE) threshold is controllable in a device where CQD film is exposed to an external electric field. Specifically, singly charged CQDs lower the threshold due to the preexisting electron in the conduction band, while strongly enhanced Auger recombination in doubly charged CQDs stymies the ASE. Experimental results and kinetic equation model show that ASE threshold reduces 10% even if our device only charges ~17% of the CQD population. Our results open new possibilities for controlling exciton recombination dynamics and achieving electrically pumped CQD lasers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6814376PMC
http://dx.doi.org/10.1126/sciadv.aav3140DOI Listing

Publication Analysis

Top Keywords

amplified spontaneous
8
spontaneous emission
8
colloidal quantum
8
quantum dots
8
auger recombination
8
ase threshold
8
charged cqds
8
electrically control
4
control amplified
4
emission colloidal
4

Similar Publications

Preterm birth (PTB) refers to the delivery of a baby before the completion of 37 weeks of gestation. It is a significant global health issue with implications for both mothers and neonates. The placenta is a transient organ crucial in the sustenance of pregnancy until parturition; its dysfunction is associated with different adverse pregnancy outcomes, including PTB.

View Article and Find Full Text PDF

In clinics, physical injuries to the spinal cord cause a temporary motor areflexia below lesion, known as spinal shock. This topic is still underexplored due to the lack of preclinical spinal cord injury (SCI) models that do not use anesthesia, which would affect spinal excitability. Our innovative design considered a custom-made micro impactor that provides localized and calibrated strikes to the ventral surface of the thoracic spinal cord of the entire CNS isolated from neonatal rats.

View Article and Find Full Text PDF

Hypoxia triggers blood-brain barrier disruption and a strong microglial activation response around leaky cerebral blood vessels. These events are greatly amplified in aged mice which is translationally relevant because aged patients are far more likely to suffer hypoxic events from heart or lung disease, and because of the pathogenic role of blood-brain barrier breakdown in vascular dementia. Importantly, it is currently unclear if disrupted cerebral blood vessels spontaneously repair and if they do, whether surrounding microglia deactivates.

View Article and Find Full Text PDF

Tunable Picoliter-Scale Dropicle Formation Using Amphiphilic Microparticles with Patterned Hydrophilic Patches.

Adv Sci (Weinh)

December 2024

Control and Manipulation of Microscale Living Objects, Center for Translational Cancer Research (TranslaTUM), Munich Institute of Biomedical Engineering (MIBE), Department of Electrical Engineering, School of Computation, Information and Technology (CIT), Technical University of Munich, Einsteinstraße 25, 81675, Munich, Germany.

Microparticle-templated droplets or dropicles have recently gained interest in the fields of diagnostic immunoassays, single-cell analysis, and digital molecular biology. Amphiphilic particles have been shown to spontaneously capture aqueous droplets within their cavities upon mixing with an immiscible oil phase, where each particle templates a single droplet. Here, an amphiphilic microparticle with four discrete hydrophilic patches embedded at the inner corners of a square-shaped hydrophobic outer ring of the particle (4C particle) is fabricated.

View Article and Find Full Text PDF

Characterization of a novel SNP identified in Australian group A isolates derived from the M1 lineage.

mBio

December 2024

Institute for Molecular Bioscience, Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.

Group A (GAS) is a human-adapted pathogen responsible for a variety of diseases. The GAS M1 lineage has contributed significantly to the recently reported increases in scarlet fever and invasive infections. However, the basis for its evolutionary success is not yet fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!