Background: : With the increasing incidence of asthma, more attention is focused on the diverse and complex nutritional and environmental triggers of asthma exacerbations. Currently, there are no established risk assessment tools to evaluate asthma triggering potentials of most of the nutritional and environmental triggers encountered by asthmatic patients.

Purpose:  The objective of this study is to devise a reliable workflow, capable of estimating the toxicogenomic effect of such factors on key player genes in asthma pathogenesis.

Methods: Gene expression extracted from publicly available datasets of asthmatic bronchial epithelium were subjected to a comprehensive analysis of differential gene expression to identify significant genes involved in asthma development and progression. The identified genes were subjected to Gene Set Enrichment Analysis using a total of 31,826 gene sets related to chemical, toxins, and drugs to identify common agents that share similar asthma-related targets genes and signaling pathways.

Results: Our analysis identified 225 differentially expressed genes between severe asthmatic and healthy bronchial epithelium. Gene Set Enrichment Analysis of the identified genes showed that they are involved in response to toxic substances and organic cyclic compounds and are targeted by 41 specific diets, plants products, and plants related toxins (eg adenine, arachidonic acid, baicalein, caffeic acid, corilagin, curcumin, ellagic acid, luteolin, microcystin-RR, phytoestrogens, protoporphyrin IX, purpurogallin, rottlerin, and salazinic acid). Moreover, the identified chemicals share interesting inflammation-related pathways like NF-κB.

Conclusion: Our analysis was able to explain and predict the toxicity in terms of stimulating the differentially expressed genes between severe asthmatic and healthy epithelium. Such an approach can pave the way to generate a cost-effective and reliable source for asthma-specific toxigenic reports thus allowing the asthmatic patients, physicians, and medical researchers to be aware of the potential triggering factors with fatal consequences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6717055PMC
http://dx.doi.org/10.2147/PGPM.S217535DOI Listing

Publication Analysis

Top Keywords

nutritional environmental
8
environmental triggers
8
gene expression
8
bronchial epithelium
8
genes involved
8
identified genes
8
gene set
8
set enrichment
8
enrichment analysis
8
analysis identified
8

Similar Publications

Background: Central venous access devices (CVAD) are widely used in patient care, providing an essential, reliable pathway for patients to receive chemotherapy, long-term infusions, and nutritional support. However, a system of exercise management has not been developed in patients with CVAD.

Purpose: To evaluate and summarize the evidence for management exercise in patients with CVAD and provide guidance for clinical practice.

View Article and Find Full Text PDF

: Non-alcoholic fatty liver disease (NAFLD) has become a growing public health problem worldwide, and dietary interventions have important potential in the prevention and treatment of NAFLD. Moreover, previous animal studies have shown that flaxseed has a good improvement effect in animal NAFLD models. : Assess whether flaxseed powder could improve the liver lipid content in patients with NAFLD.

View Article and Find Full Text PDF

Editorial: Novel technologies applied to flavoromics and sensory evaluation of foods.

Front Nutr

January 2025

Department of Food and Human Nutritional Sciences, Faculty of Agriculture and Food Sciences, University of Manitoba, Winnipeg, MB, Canada.

View Article and Find Full Text PDF

Analysis of the Behavioral Change and Utility Features of Electronic Activity Monitors.

Technologies (Basel)

December 2020

Department of Nutrition and Metabolism, School of Health Professions, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA.

The aim of this study was to perform a content analysis of electronic activity monitors that also evaluates utility features, code behavior change techniques included in the monitoring systems, and align the results with intervention functions of the Behaviour Change Wheel program planning model to facilitate informed device selection. Devices were coded for the implemented behavior change techniques and device features. Three trained coders each wore a monitor for at least 1 week from December 2019-April 2020.

View Article and Find Full Text PDF

Upcycling of Enzymatically Recovered Amino Acids from Textile Waste Blends: Approaches for Production of Valuable Second-Generation Bioproducts.

ACS Sustain Resour Manag

January 2025

Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University, Vienna, Konrad-Lorenz-Strasse 20, 3430 Tulln an der Donau, Austria.

Tremendous quantities of textile waste generated and primarily landfilled annually represent a huge risk of contaminating the environment, together with loss of valuable resources. Especially, blended fabrics further pose a challenge for recycling and valorization strategies, while enzymatic hydrolysis offers a highly specific and environmentally friendly solution. In this study, we demonstrate that proteases specifically hydrolyze the wool components in blends with polyester, allowing recovery of pure polyester fibers as well as amino acids and peptides as platform molecules for further valorization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!