Objective: In this work, the loading of nicotine onto mesoporous silicate materials and its release into a phosphate buffer solution at 37°C were investigated.
Methods: The mesoporous silicate materials designated as MCM-41 were prepared with different pore sizes via using alkyltrimethylammonium bromide surfactants with different alkyl chain lengths of carbon atoms 12, 14, and 16. The mesoporous silicate systems were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), N2-adsorption-desorption isotherms, and FT-IR spectroscopy.
Results: Loading of nicotine was confirmed by FTIR and thermal gravimetric analysis and was determined by High-Performance Liquid Chromatography (HPLC).
Conclusion: A slight increase in loading capacity with increasing pore size was observed, with a loading capacity of about 17% for MCM-41(16). The release of nicotine was monitored by HPLC and was almost complete for MCM-41(14) and MCM-41(16) in 8 h.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1567201816666191106102740 | DOI Listing |
Gels
December 2024
Chemistry Department, Faculty of Science, Taibah University, Medina Munwarah 42353, Saudi Arabia.
This work presents a novel hydrothermally aided sol-gel method for preparation of mesoporous silica nanoparticles (MSNs) with a narrow particle size distribution and varied pore sizes. The method was carried out in alkaline media in presence of polyethylene glycol (PEG) and cetyltrimethylammonium chloride (CTAC) as dual templates and permitted the synthesis of spherical mesoporous silica with a high surface area (1011.42 m/g).
View Article and Find Full Text PDFJ Environ Sci Health B
January 2025
Laboratoire Génie Civil et d'Hydraulique, Université 8 Mai 1945, Guelma, Algeria.
The treatment of effluents from the pharmaceutical industry currently remains a major challenge due to their impact on the environment and public health along with the cost of treatments. Considering these issues, our work focused on the development of materials with effective adsorption properties to treat industrial effluents based on locally available and inexpensive clays and zeolite. Local Algerian kaolin (Djebel Debbagh), palygorskite (Ghoufi) and zeolite (Tinbdar) were treated thermally and chemically prior to synthesis into mesoporous materials of hexagonal structure using pluronic P123 as surfactant.
View Article and Find Full Text PDFMolecules
December 2024
Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan 250307, China.
Nanotechnology has significantly advanced various fields, including therapeutic delivery, through the use of nanomaterials as drug carriers. The biocompatibility of ordered porous silica materials makes them promising candidates for drug delivery systems, particularly in the treatment of cancer and other diseases. This review summarizes the use of microporous zeolites and mesoporous silica materials in drug delivery, focusing on their physicochemical properties and applications as drug carriers.
View Article and Find Full Text PDFMolecules
November 2024
Department of Chemistry and Biochemistry & Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
Emissions of volatile organic compounds (VOCs) such as benzene, toluene, xylene, styrene, hexane, tetrachloroethylene, acetone, acetaldehyde, formaldehyde, isopropanol, etc., increase dramatically with accelerated industrialization and economic growth. Most VOCs cause serious environmental pollution and threaten human health due to their toxic and carcinogenic nature.
View Article and Find Full Text PDFHeliyon
November 2024
Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket, 83120, Thailand.
This study introduces a novel, eco-friendly composite, uncalcined mesoporous silica nanoparticles incorporated into a starch cryogel (MSNs-Cry), designed for the effective removal of methyl orange (MO) from water. MSNs-Cry integrates uncalcined mesoporous silica nanoparticles (MSNs) within a starch cryogel network, leveraging the high adsorption capacity of MSNs. The composite achieved a maximum adsorption capacity of 18.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!