Plasmonic biosensing techniques employ metal nanostructures, commonly gold (Au), often with biomolecules attached to their surfaces either directly or via other linkers. Various surface chemistry methods based on dispersion and covalent interactions are used to attach biomolecules to Au. As a result, when immobilizing a molecule on a metal surface, quantitative estimates of binding efficiency and stability of these surface chemistry methods are needed. Most prior work to compare such methods deals with bulk/thin film configurations or spherical nanoparticles, and very little is known about immobilization of biomolecules on plasmonic nanostructures of different shapes. Besides, due to rapid advancement of modern nanofabrication techniques, there is a growing need to determine an efficient surface chemistry method for immobilization of biomolecules on nonspherical plasmonic nanostructures. Previous comparison of immobilization methods on spherical Au nanoparticles has shown that physical adsorption resulted in the highest concentration of immobilized antibodies. In our work, we conducted a similar study and compared four representative Au surface functionalization methods as well as estimated how efficient these methods are at attaching biomolecules to nonspherical plasmonic Au nanostructures. We estimated the concentration of immobilized antibody that is specific to human C-reactive protein (anti-hCRP) by measuring the localized surface plasmon resonance (LSPR) shifts after exposing the surface of Au nanostructures to the antibody. Our results differ from the previously reported ones since the highest concentration of anti-hCRP was immobilized using 11-mercaptoundecanoic acid (MUA) chemistry. We demonstrated that immobilized antibodies retained their stability and specificity toward hCRP throughout the immunoassay when diluted hCRP or hCRP-spiked human serum samples were used. These findings have important implications for the fields of biosensing and diagnostics that employ nonspherical plasmonic nanostructures since an overall performance of these devices depends on efficient biomolecule immobilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.9b03780 | DOI Listing |
Mikrochim Acta
January 2025
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
A new methodology is presented for the rapid, specific, and sensitive detection of irinotecan (CPT-11), a chemotherapeutic agent utilized in the treatment of cancer, along with its metabolically active derivative, SN-38, via laser desorption/ionization mass spectrometry (LDI MS). The method includes the detection of camptothecin (CPT), which can be utilized as an internal standard for the quantitative assessment of both CPT-11 and SN-38 in mouse serum. The approach utilizes a plasmonic two-dimensional (2D) black phosphorus nanosheet (BPN)-gold nanomatrix (BP@Au) in LDI MS.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.
Currently commercial colorimetric paper lateral flow immunoassays exhibit insufficient limit of detection (LOD) and limited clinical sensitivity toward the detection of SARS-CoV-2 antigens, which causes a high false negative rate. To mitigate this issue, a new plasmon-enhanced fluorescence probe was developed for paper lateral flow strips (PLFSs). The probe is made of a sandwich-structured Ag-core@silica@dye@silica-shell nanoparticle in which fluorescent dyes are sandwiched between the plasmonic Ag core and the silica outer shell, and the separation distance between the Ag core and the dye molecules is controlled by the silica space layer.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
The g-C3N4/CS biosensor was designed, fabricated, and tested using compounds such as glucose, urine, lactose, and flutamide at a molarity of 10 µM, which could demonstrate a high sensitivity of 200 μm-1 for flutamide. Powerful effective medium theory and FDTD simulation were used to predict the most favorable mode and plasmonic properties of a graphite carbon nitride and chitosan nanocomposite. The research also explores the characteristics of surface plasmon resonance exhibited by the nanocomposite as the chitosan content is adjusted.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Fundación IMDEA Nanociencia, Madrid, Spain; Division of Hematopoietic Innovative Therapies, Innovative Therapies Unit. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 28040, Madrid, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040, Madrid, Spain. Electronic address:
Background: The detection of genetic sequences represents the gold standard procedure for species discrimination, genetic characterisation of tumours, and identification of pathogens. The development of new molecular detection methods, accessible and cost effective, is of great relevance. Biosensors based on plasmonic nanoparticles, such as gold nanoparticles (AuNPs), provide a powerful and versatile platform for highly sensitive, economic, user-friendly and label-free sensing.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, PR China. Electronic address:
Background: The foodborne pathogens, e.g., Salmonella typhimurium (S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!