Those born very preterm (VPT; <32 weeks gestational age) have an increased risk in developing a wide range of cognitive deficits. In early-to-late childhood, brain structure has been shown to be altered in VPT compared to full-term (FT) children; however, the results are inconsistent. The current study examined subcortical volumes, cortical thickness, and surface area in a large cohort of VPT and FT children aged 4-12 years. Structural magnetic resonance imaging (MRI) was obtained on 120 VPT and 146 FT children who returned up to three times, resulting in 176 VPT and 173 FT unique data points. For each participant, Corticometric Iterative Vertex-based Estimation of Thickness was used to obtain global measurements of total brain, cortical grey and cortical white matter volumes, along with surface-based measurements of cortical thickness and surface area, and Multiple Automatically Generated Templates (MAGeT) brain segmentation tool was used to segment the subcortical structures. To examine group differences and group-age interactions, mixed-effects models were used (controlling for whole-brain volume). We found few differences between the two groups in subcortical volumes. The VPT children showed increased cortical thickness in frontal, occipital and fusiform gyri and inferior pre-post-central areas, while thinning occurred in the midcingulate. Cortical thickness in occipital regions showed more rapid decreases with age in the VPT compared to the FT children. VPT children also showed both regional increases, particularly in the temporal lobe, and decreases in surface area. Our results indicate a delayed maturational trajectory in those born VPT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267987 | PMC |
http://dx.doi.org/10.1002/hbm.24847 | DOI Listing |
J Comp Neurol
January 2025
Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons that regulate responses to a variety of interoceptive and cutaneous sensory signals. One lateral PB subpopulation expresses the Calca gene, which codes for the neuropeptide calcitonin gene-related peptide (CGRP). These PB neurons relay signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet their inputs and their neurochemical identity are only partially understood.
View Article and Find Full Text PDFBrain
January 2025
Faculty of Social and Behavioural Sciences, University of Amsterdam, 1001 NK, Amsterdam, The Netherlands.
Mid-level visual processing represents a crucial stage between basic sensory input and higher-level object recognition. The conventional model posits that fundamental visual qualities like color and motion are processed in specialized, retinotopic brain regions (e.g.
View Article and Find Full Text PDFBrain Struct Funct
December 2024
Brain and Language Lab, Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria.
Why is it that some people seem to learn new languages faster and more easily than others? The present study investigates the neuroanatomical basis of language learning aptitude, with a focus on the multiplication pattern of the transverse temporal gyrus/gyri (TTG/TTGs) of the auditory cortex. The size and multiplication pattern of the first TTG (i.e.
View Article and Find Full Text PDFJ Neurosci
December 2024
State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China, 100875
The human brain exhibits high degree of individual variability in both its structure and function, which underlies inter-subject differences in cognition and behavior. It was previously shown that functional connectivity is more variable in the hetero-modal association cortex but less variable in the unimodal cortices. Structural connectivity is the anatomical substrate of functional connectivity, but the spatial and temporal patterns of individual variability in structural connectivity (IVSC) remain largely unknown.
View Article and Find Full Text PDFFront Hum Neurosci
November 2024
The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States.
Introduction: Brain cross-sectional images, tractography, and segmentation are valuable resources for neuroanatomical education and research but are also crucial for neurosurgical planning that may improve outcomes in cerebellar and brainstem interventions. Although ultrahigh-resolution 7-Tesla (7T) magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) reveal such structural brain details in living or fresh unpreserved brain tissue, imaging standard formalin-preserved cadaveric brain specimens often used for neurosurgical anatomic studies has proven difficult. This study sought to develop a practical protocol to provide anatomic information and tractography results of an human brainstem-cerebellum specimen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!