A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Challenges in Fluorescence Detection of Chemical Warfare Agent Vapors Using Solid-State Films. | LitMetric

Challenges in Fluorescence Detection of Chemical Warfare Agent Vapors Using Solid-State Films.

Adv Mater

Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.

Published: May 2020

Organophosphorus (OP)-based nerve agents are extremely toxic and potent acetylcholinesterase inhibitors and recent attacks involving nerve agents highlight the need for fast detection and intervention. Fluorescence-based detection, where the sensing material undergoes a chemical reaction with the agent causing a measurable change in the luminescence, is one method for sensing and identifying nerve agents. Most studies use the simulants diethylchlorophosphate and di-iso-propylfluorophosphate to evaluate the performance of sensors due to their reduced toxicity relative to OP nerve agents. While detection of nerve agent simulants in solution is relatively widely reported, there are fewer reports on vapor detection using solid-state sensors. Herein, progress in organic semiconductor sensing materials developed for solid-state detection of OP-based nerve agent vapors is reviewed. The effect of acid impurities arising from the hydrolysis of simulants and nerve agents on the efficacy and selectivity of the reported sensing materials is also discussed. Indeed, in some cases it is unclear whether it is the simulant that is detected or the acid hydrolysis products. Finally, it is highlighted that while analyte diffusion into the sensing film is critical in the design of fast, responsive sensing systems, it is an area that is currently not well studied.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201905785DOI Listing

Publication Analysis

Top Keywords

nerve agents
20
agent vapors
8
op-based nerve
8
nerve agent
8
sensing materials
8
nerve
7
detection
6
sensing
6
agents
5
challenges fluorescence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!