Discrete Supramolecular Stacks Based on Multinuclear Tweezer-Type Rhodium Complexes.

Chemistry

Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Department of Chemistry, Fudan University, Shanghai, 200433, P.R. China.

Published: January 2020

By taking advantage of self-complementary π-π stacking and CH-π interactions, a series of discrete quadruple stacks were constructed through the self-aggregation of U-shaped dirhodium metallotweezer complexes featuring various planar polyaromatic ligands. By altering the conjugate stacking strength and bridging ligands, assemblies with a range of topologies were obtained, including a binuclear D-shaped macrocycle, tetranuclear open-ended cagelike frameworks, and duplex metallotweezer stacking structures. Furthermore, a rare stacking interaction resulting in selective C-H activation was observed during the self-assembly process of these elaborate architectures.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201904580DOI Listing

Publication Analysis

Top Keywords

discrete supramolecular
4
supramolecular stacks
4
stacks based
4
based multinuclear
4
multinuclear tweezer-type
4
tweezer-type rhodium
4
rhodium complexes
4
complexes advantage
4
advantage self-complementary
4
self-complementary π-π
4

Similar Publications

The morphology of nanodrugs is of utmost importance in photothermal therapy because it directly influences their physicochemical behavior and biological responses. However, clarifying the inherent relationship between morphology and the resultant properties remains challenging, mainly due to the limitations in the flexible morphological regulation of nanodrugs. Herein, we created a range of morphologically controlled nanoassemblies based on poly(ethylene glycol)--poly(d,l-lactide) (PEG-PLA) block copolymer building blocks, in which the model photosensitizer phthalocyanine was incorporated.

View Article and Find Full Text PDF

This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization (SGACP). This new SGACP paradigm allows for routine polymerization of common monomers and organic materials into precise monodispersed, dendritic macromolecules (i.

View Article and Find Full Text PDF

Multitopic Corannulene-Porphyrin Hosts for Fullerenes: A Three-Layer Scaffold for Precisely Designed Supramolecular Ensembles.

Org Lett

January 2025

GIR MIOMeT, IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E47011, Spain.

A method to synthesize cofacial dimeric porphyrins bearing eight corannulene units has been developed. It relies on the stability of octahedral CO-capped Ru(II) complexes linked by N-donor ligands. This specific arrangement provides an optimal scaffold to accommodate fullerenes by imposing corannulene groups at a precise distance and relative orientation.

View Article and Find Full Text PDF

Red emission in crystals has been observed with an ultra-small-single-benzenic -fluorophore () with a molecular weight (MW) of only 197 Da, bettering the literature report of fluorophores with the lowest MW = 252 Da. Supramolecular extensive hydrogen-bonding and J-aggregate type centrosymmetric discrete-dimers or a 1D chain of s led to red emission ( = 610-636 nm) in crystals. Unlike in the solution phase showing one absorption band, in thin films and in crystals the transition from the S state to both the S state and S state becomes feasible.

View Article and Find Full Text PDF
Article Synopsis
  • * The researchers used a combination of Ga-MOC and Ni-ethylenediamine complex as a binder to fine-tune the structural evolution of their co-assembled system by adjusting the binder ratio.
  • * Findings show that altering the binder ratio affects the length and properties of the resulting nanostructures, leading to the formation of hydrogels that can turn into crystals autonomously, influenced by the interactions between the components.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!