Since the initial release of miRPathDB, tremendous progress has been made in the field of microRNA (miRNA) research. New miRNA reference databases have emerged, a vast amount of new miRNA candidates has been discovered and the number of experimentally validated target genes has increased considerably. Hence, the demand for a major upgrade of miRPathDB, including extended analysis functionality and intuitive visualizations of query results has emerged. Here, we present the novel release 2.0 of the miRNA Pathway Dictionary Database (miRPathDB) that is freely accessible at https://mpd.bioinf.uni-sb.de/. miRPathDB 2.0 comes with a ten-fold increase of pre-processed data. In total, the updated database provides putative associations between 27 452 (candidate) miRNAs, 28 352 targets and 16 833 pathways for Homo sapiens, as well as interactions of 1978 miRNAs, 24 898 targets and 6511 functional categories for Mus musculus. Additionally, we analyzed publications citing miRPathDB to identify common use-cases and further extensions. Based on this evaluation, we added new functionality for interactive visualizations and down-stream analyses of bulk queries. In summary, the updated version of miRPathDB, with its new custom-tailored features, is one of the most comprehensive and advanced resources for miRNAs and their target pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145528PMC
http://dx.doi.org/10.1093/nar/gkz1022DOI Listing

Publication Analysis

Top Keywords

novel release
8
release mirna
8
mirna pathway
8
pathway dictionary
8
dictionary database
8
mirpathdb
7
mirna
5
mirpathdb novel
4
database initial
4
initial release
4

Similar Publications

Regulation of Dopamine Release by Tonic Activity Patterns in the Striatal Brain Slice.

ACS Chem Neurosci

January 2025

Departments of Psychiatry and Neurology, Division of Molecular Therapeutics, New York State Psychiatric Institute, Columbia University Medical Center, New York, New York 10032, United States.

Voluntary movement, motivation, and reinforcement learning depend on the activity of ventral midbrain neurons, which extend axons to release dopamine (DA) in the striatum. These neurons exhibit two patterns of action potential activity: low-frequency tonic activity that is intrinsically generated and superimposed high-frequency phasic bursts that are driven by synaptic inputs. acute striatal brain preparations are widely employed to study the regulation of evoked DA release but exhibit very different DA release kinetics than recordings.

View Article and Find Full Text PDF

Hormonal factors play an essential role as an underlying causative factor of oligoasthenoteratozoospermia (OAT), and these patients can benefit from hormonal medications that modulate the hypothalamic-pituitary-gonadal axis. This review aims to outline the various medications used as hormonal therapy in treating infertile men with OAT. This manuscript focuses on essential hormonal evaluation, identifying men who would benefit from treatment, selecting the appropriate medication, determining the duration of therapy, and evaluating hormonal treatment outcomes.

View Article and Find Full Text PDF

Background/objectives: Acute myeloid leukemia (AML) is an aggressive neoplasm. Although most patients respond to induction therapy, they commonly relapse due to recurrent disease in the bone marrow microenvironment (BMME). So, the disruption of the BMME, releasing tumor cells into the peripheral circulation, has therapeutic potential.

View Article and Find Full Text PDF

Brain-derived neurotropic factor (BDNF) is expressed by skeletal muscle as a myokine. Our previous work showed that the active precursor, proBDNF, is the predominant form of BDNF expressed in skeletal muscle, and that following skeletal muscle injury, proBDNF levels are significantly increased. However, the function of the muscle-derived proBDNF in injury-induced inflammation has yet to be fully understood.

View Article and Find Full Text PDF

Mammalian blood cells originate from specialized 'hemogenic' endothelial (HE) cells in major arteries. During the endothelial-to-hematopoietic transition (EHT), nascent hematopoietic stem cells (HSCs) bud from the arterial endothelial wall and enter circulation, destined to colonize the fetal liver before ultimately migrating to the bone marrow. Mechanisms and processes that facilitate EHT and the release of nascent HSCs are incompletely understood, but may involve signaling from neighboring vascular endothelial cells, stromal support cells, circulating pre-formed hematopoietic cells, and/or systemic factors secreted by distal organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!