Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020874 | PMC |
http://dx.doi.org/10.5935/abc.20190211 | DOI Listing |
Sheng Li Xue Bao
December 2024
Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; Institute of Advanced Clinical Medicine, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
Heart failure is characterized by abnormal β-adrenergic receptor (β-AR) activation and mitochondrial dysfunction. In heart failure, overactivation of β-AR mediates key pathological processes in cardiomyocytes, including oxidative stress, calcium overload and metabolic abnormalities, which subsequently lead to inflammation, myocardial apoptosis and necrosis. Mitochondria are the core organelles for energy metabolism, and also play a vital role in calcium homeostasis, redox balance and signaling transduction.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China.
Amniotic fluid (AF)-derived exosomal miRNA have been explored as potential contributors to the pathogenesis of Tetralogy of Fallot (TOF). This study aimed to investigate the expression profiles of AF-derived exosomal miRNAs and their potential contribution to TOF development. Exosomes were isolated from AF samples obtained from pregnant women carrying fetuses diagnosed with TOF.
View Article and Find Full Text PDFRadiol Cardiothorac Imaging
February 2025
From the Department of Radiology, Narayana Institute of Cardiac Sciences, Bangalore 560099, India (S.G., V.R.); and Department of Radiology, Amrita Institute of Medical Sciences and Research Centre, Kochi, India (R.R.).
Int J Med Sci
January 2025
Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
This study investigates the role of Fundc1 in cardiac protection under high-altitude hypoxic conditions and elucidates its underlying molecular mechanisms. Using cardiomyocyte-specific knockout ( ) mice, we demonstrated that deficiency exacerbates cardiac dysfunction under simulated high-altitude hypoxia, manifesting as impaired systolic and diastolic function. Mechanistically, we identified that Fundc1 regulates cardiac function through the mitochondrial unfolded protein response (mito-UPR) pathway.
View Article and Find Full Text PDFRev Cardiovasc Med
December 2024
IRCCS (Istituto di Ricerca e Cura a Carattere Scientifico) Humanitas Research Hospital, 20089 Rozzano-Milan, Italy.
Cardiomyopathies, historically regarded as rare, are increasingly recognized due to advances in imaging diagnostics and heightened clinical focus. These conditions, characterized by structural and functional abnormalities of the myocardium, pose significant challenges in both chronic and acute patient management. A thorough understanding of the hemodynamic properties, specifically the pressure-volume relationships, is essential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!