AI Article Synopsis

  • Several mutations, including αIIb(R995W), cause consistent activation of integrin αIIbβ3 in congenital macrothrombocytopenia, with αIIb(R995W) being common in Japanese patients.
  • The study investigated the effects of this mutation on platelet production and function by creating mice with the αIIb(R990W) knock-in mutation.
  • Results showed that these mice had reduced platelet counts, larger platelet size, and impaired platelet production and function, indicating that the mutation leads to macrothrombocytopenia and dysfunction similar to Glanzmann thrombasthenia.

Article Abstract

Background: To date, several mutations that induce constitutive activation of integrin αIIbβ3 have been identified in congenital macrothrombocytopenia. Of these, αIIb(R995W) is the most prevalent mutation observed in Japanese patients with αIIbβ3-related congenital macrothrombocytopenia.

Objective And Methods: The present study aimed to explore the effects of constitutive activation of the αIIb(R995W) mutation on platelet production, morphology, and function. We generated αIIb(R990W) knock-in (KI) mice corresponding to human αIIb(R995W).

Results: Platelet counts of heterozygous (hetero) and homozygous (homo) KI mice were decreased by ~10% and ~25% relative to those of wild-type (WT) mice, respectively, with increase in platelet size. Decrease in absolute reticulated platelet numbers in steady state, delayed recovery from thrombocytopenia induced by anti-platelet antibody and impaired response to exogenous thrombopoietin administration suggested impaired platelet production in KI mice. WT and KI mice showed no significant differences in the number of megakaryocytes and ploidy of megakaryocytes, whereas proplatelet formation was significantly impaired in homo mice. We observed a slight but significant reduction in platelet lifespan in homo mice. The homo mice showed dramatic reduction in αIIbβ3 expression in platelets, which was accompanied by severe in vivo and in vitro platelet dysfunction.

Conclusion: The αIIb(R990W) KI mice developed macrothrombocytopenia, which was primarily attributed to impaired proplatelet formation. In addition, homo KI mice showed marked downregulation in αIIbβ3 expression in platelets with severe impaired platelet function, similar to Glanzmann thrombasthenia.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jth.14678DOI Listing

Publication Analysis

Top Keywords

homo mice
20
mice
10
platelet
9
knock-in mice
8
constitutive activation
8
platelet production
8
impaired platelet
8
proplatelet formation
8
αiibβ3 expression
8
expression platelets
8

Similar Publications

A conifer metabolite corrects episodic ataxia type 1 by voltage sensor-mediated ligand activation of Kv1.1.

Proc Natl Acad Sci U S A

January 2025

Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697.

Loss-of-function sequence variants in , which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.

View Article and Find Full Text PDF

Confined cell migration along extracellular matrix space in vivo.

Proc Natl Acad Sci U S A

January 2025

Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.

Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.

View Article and Find Full Text PDF

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

Computational-aided rational mutation design of pertuzumab to overcome active HER2 mutation S310F through antibody-drug conjugates.

Proc Natl Acad Sci U S A

January 2025

Laboratory of Precision Medicine and Biopharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.

Recurrent missense mutations in the human epidermal growth factor receptor 2 (HER2) have been identified across various human cancers. Among these mutations, the active S310F mutation in the HER2 extracellular domain stands out as not only oncogenic but also confers resistance to pertuzumab, an antibody drug widely used in clinical cancer therapy, by impeding its binding. In this study, we have successfully employed computational-aided rational design to undertake directed evolution of pertuzumab, resulting in the creation of an evolved pertuzumab variant named Ptz-SA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!