Nanoparticle polymer composites have enabled material multifunctionalities that are difficult to obtain otherwise. A simple modification to a commercially available resin system enables a universal methodology to embed nanoparticles in resins via spatial, temporal, thermal, concentration, and chemical control parameters. Changes in nanoparticle density distribution are exploited to demonstrate dynamic optical and electronic properties that can be processed on-demand, without the need for expensive equipment or cleanroom facilities. This strategy provides access to the control of optical (cooperative plasmonic effects), electronic (insulator to a conductor), and chemical parameters (multimetal patterning). Using the same composite resin system, the followings are fabricated: i) diffraction gratings with tuneable diffraction efficiencies (10-78% diffraction efficiencies), ii) organic electrochemical transistors with a low drive voltage, and iii) embedded electrodes in confined spaces for potential diagnostic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201901802 | DOI Listing |
PLoS One
January 2025
Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, United Kingdom.
Odours released by objects in natural environments can contain information about their spatial locations. In particular, the correlation of odour concentration timeseries produced by two spatially separated sources contains information about the distance between the sources. For example, mice are able to distinguish correlated and anti-correlated odour fluctuations at frequencies up to 40 Hz, while insect olfactory receptor neurons can resolve fluctuations exceeding 100 Hz.
View Article and Find Full Text PDFSci Adv
January 2025
Center for Nano Science and Technology, Fondazione Istituto Italiano di Tecnologia, Milano, Italy.
Achieving highly tailored control over both the spatial and temporal evolution of light's orbital angular momentum (OAM) on ultrafast timescales remains a critical challenge in photonics. Here, we introduce a method to modulate the OAM of light on a femtosecond scale by engineering a space-time coupling in ultrashort pulses. By linking azimuthal position with time, we implement an azimuthally varying Fourier transformation to dynamically alter light's spatial distribution in a fixed transverse plane.
View Article and Find Full Text PDFSci Adv
January 2025
NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland.
Magnonics, which harnesses the unique properties of spin waves, offers promising advancements in data processing due to its broad frequency range, nonlinear dynamics, and scalability for on-chip integration. Effective information encoding in magnonic systems requires precise spatial and temporal control of spin waves. Here, we demonstrate the rapid optical control of spin-wave transport in hybrid magnonic-plasmonic structures.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
Atmospheric elemental mercury (Hg) assimilation by foliage contributes prevalently to the global atmospheric Hg sink in forests. Today, little is known about the mechanisms of foliar Hg accumulation and how climate factors and tree physiology interact to impact it. Here, we examined meteorological factors, foliar physiological traits, and Hg accumulation rates from leaf emergence to senescence in a tropical rainforest, tropical savanna, and subtropical evergreen broadleaf forest.
View Article and Find Full Text PDFAstrobiology
January 2025
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA.
Exploration missions to Mars rely on landers or rovers to perform multiple analyses over geographically small sampling regions, while landing site selection is done using large-scale but low-resolution remote-sensing data. Utilizing Earth analog environments to estimate small-scale spatial and temporal variation in key geochemical signatures and biosignatures will help mission designers ensure future sampling strategies meet mission science goals. Icelandic lava fields can serve as Mars analog sites due to conditions that include low nutrient availability, temperature extremes, desiccation, and isolation from anthropogenic contamination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!