Objective: To find the covert patterns of abnormality in patients with unilateral temporal lobe epilepsy (TLE) and visually normal brain magnetic resonance images (MRI-negative), comparing them to those with visible abnormalities (MRI-positive).

Methods: We used multimodal brain MRI from patients with unilateral TLE and employed contemporary machine learning methods to predict the known laterality of seizure onset in 104 subjects (82 MRI-positive, 22 MRI-negative). A visualization approach entitled "Importance Maps" was developed to highlight image features predictive of seizure laterality in both the MRI-positive and MRI-negative cases.

Results: Seizure laterality could be predicted with an area under the receiver operating characteristic curve of 0.981 (95% confidence interval [CI] =0.974-0.989) in MRI-positive and 0.842 (95% CI = 0.736-0.949) in MRI-negative cases. The known image features arising from the hippocampus were the leading predictors of seizure laterality in the MRI-positive cases, whereas widespread temporal lobe abnormalities were revealed in the MRI-negative cases.

Significance: Covert abnormalities not discerned on visual reading were detected in MRI-negative TLE, with a spatial pattern involving the whole temporal lobe, rather than just the hippocampus. This suggests that MRI-negative TLE may be associated with subtle but widespread temporal lobe abnormalities. These abnormalities merit close inspection and postacquisition processing if there is no overt lesion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972547PMC
http://dx.doi.org/10.1111/epi.16380DOI Listing

Publication Analysis

Top Keywords

temporal lobe
20
seizure laterality
12
patterns abnormality
8
visually normal
8
normal brain
8
brain magnetic
8
magnetic resonance
8
resonance images
8
lobe epilepsy
8
patients unilateral
8

Similar Publications

Relationship between functional structures and horizontal connections in macaque inferior temporal cortex.

Sci Rep

January 2025

Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China.

Horizontal connections in anterior inferior temporal cortex (ITC) are thought to play an important role in object recognition by integrating information across spatially separated functional columns, but their functional organization remains unclear. Using a combination of optical imaging, electrophysiological recording, and anatomical tracing, we investigated the relationship between stimulus-response maps and patterns of horizontal axon terminals in the macaque ITC. In contrast to the "like-to-like" connectivity observed in the early visual cortex, we found that horizontal axons in ITC do not preferentially connect sites with similar object selectivity.

View Article and Find Full Text PDF

Our previous in silico data indicated an overrepresentation of the ZF5 motif in the promoters of genes in which circadian oscillations are altered in the ventral hippocampus in the pilocarpine model of temporal lobe epilepsy in mice. In this study, we test the hypothesis that the Zbtb14 protein oscillates in the hippocampus in a diurnal manner and that this oscillation is disrupted by epilepsy. We found that Zbtb14 immunostaining is present in the cytoplasm and cell nuclei.

View Article and Find Full Text PDF

Prediction of Pharmacoresistance in Drug-Naïve Temporal Lobe Epilepsy Using Ictal EEGs Based on Convolutional Neural Network.

Neurosci Bull

January 2025

Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, College of Pharmaceutical Sciences, The Second Affiliated Hospital of Zhejiang Chinese Medical University (Xinhua Hospital), Zhejiang Chinese Medical University, Hangzhou, 310053, China.

Approximately 30%-40% of epilepsy patients do not respond well to adequate anti-seizure medications (ASMs), a condition known as pharmacoresistant epilepsy. The management of pharmacoresistant epilepsy remains an intractable issue in the clinic. Its early prediction is important for prevention and diagnosis.

View Article and Find Full Text PDF

Background: Sudden sensorineural hearing loss (SSNHL) is associated with abnormal changes in the brain's central nervous system. Previous studies on the brain networks of SSNHL have primarily focused on functional connectivity within the brain. However, in addition to functional connectivity, structural connectivity also plays a crucial role in brain networks.

View Article and Find Full Text PDF

Introduction: The generalizability of neuroimaging and cognitive biomarkers in their sensitivity to detect preclinical Alzheimer's disease (AD) and power to predict progression in large, multisite cohorts remains unclear.

Method: Longitudinal demographics, T1-weighted magnetic resonance imaging (MRI), and cognitive scores of 3036 cognitively unimpaired (CU) older adults (amyloid beta [Aβ]-negative/positive [A-/A+]: 1270/1558) were included. Cross-sectional and longitudinal cognition and medial temporal lobe (MTL) structural measures were extracted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!